- axis的取值个数等于矩阵的维度
- axis=i 表示第i维的数,按照i的变化进行相应操作,每个i维(i=1, i=2, i=3…) 对应位置的所有数,会最终变成1个数,故少了一个维度
- 比如np.sum操作
- 下面的例子假设了(4,3,2,3)维的矩阵,axis取值的顺序也就是(4,3,2,3)
- axis=0时,矩阵形状就变成(3,2,3)
- axis=1时,矩阵形状就变成(4,2,3)
- axis=2时,矩阵形状就变成(4,3,3)
- axis=3时,矩阵形状就变成(4,3,2)
d = data = np.random.randint(0, 5, [4,3,2,3])
d
array([[[[0, 0, 1],
[1, 1, 2]],
[[1, 2, 4],
[2, 4, 2]],
[[1, 0, 3],
[1, 2, 0]]],
[[[1, 2, 1],
[0, 1, 3]],
[[2, 1, 0],
[1, 0, 1]],
[[0, 2, 0],
[0, 3, 2]]],
[[[3, 1, 0],
[2, 1, 4]],
[[0, 2, 2],
[4, 4, 1]],
[[1, 2, 2],
[2, 2, 1]]],
[[[3, 0, 1],
[0, 3, 3]],
[[0, 3, 1],
[3, 1, 3]],
[[0, 4, 0],
[0, 3, 0]]]])