如何在本地部署大模型服务?

本文将讲述如何在本地部署大模型服务,并使用Embeeding、向量数据库和LangChain构建本地知识库

本地部署LLM

通常使用LangChain会去调用OpenAI的服务,但是我们在使用OpenAI服务时,但经常会遇到很多阻力,比如付费、网络不稳定等。因此我们可以在下载一个较小的大模型到本地,并将其部署成OpenAI服务,这样也便于我们使用LangChain去直接调用。

首先需要下载FastChat:

	pip3 install "fschat[model_worker,webui]" -i https://pypi.tuna.tsinghua.edu.cn/simple

部署很简单,只要开启三个终端分别运行以下命令

启动控制器:

	python -m fastchat.serve.controller --host 0.0.0.0

启动worker,model-path 要指定模型的路径

	python -m fastchat.serve.model_worker --model-path /to/path/ --host 0.0.0.0

最后执行命令:

	python -m fastchat.serve.openai_api_server --host 0.0.0.0

这样就可以将模型启动为一个OpenAI服务

这里用的是千问7B大模型,可以执行如下代码进行下载:

	from modelscope.hub.snapshot_download import snapshot_download

	model_dir = snapshot_download('qwen/Qwen-7B-Chat', cache_dir='./to/path')

Embeeding

Embedding 技术已经作为「基本操作」广泛应用于推荐、广告、搜索等互联网核心领域中。Embedding 是用一个低维稠密向量来表示一个对象,使得这个向量能够表达相应对象的某些特征,同时向量之间的距离能反应对象之间的相似性。我们要基于大模型搭建本地知识库,那就必须要用到Embeeding了,将文本数据转化成向量,只有转化成向量,才便于计算机处理。将这些向量存到数据库后,我们可以将要提的问题同样适用Embeeding转化为向量,然后就行语义相似度查询,获取相关的知识信息。

使用如下代码就可以轻松的将语言转化为向量:

	from sentence_transformers import SentenceTransformer

	 

	model = SentenceTransformer('all-mpnet-base-v2')

向量数据库

上文提到,我们会将语句转化为的向量存储到数据库中,这个数据库就是向量数据库。向量数据库主要用于图像检索、音频检索、文本检索等领域,其主要特点是能够高效地存储和检索大规模的向量数据,它用了专门的数据结构和算法来处理向量之间的相似性计算和查询。 通过构建索引结构,向量数据库可以快速找到最相似的向量,以满足各种应用场景中的查询需求。

我们将一些文档信息,也就是知识,分块存到向量数据库中,对于用户的问题,使用 Embedding 的相似度进行语义搜索的技术。然后,我们将和问题语义最接近的前几条内容,作为提示语的一部分给到 AI,就相当于给AI配备一套知识库。

LangChain

最后后使用LangChain组装上述所有的功能,实现大模型外挂知识库:

	from langchain.chat_models import ChatOpenAI

	from langchain.text_splitter import RecursiveCharacterTextSplitter

	from langchain.document_loaders import TextLoader

	from langchain.document_loaders import PyPDFLoader

	from langchain.document_loaders import Docx2txtLoader

	from langchain.embeddings import ModelScopeEmbeddings

	from langchain.vectorstores import Qdrant

	from langchain.retrievers.multi_query import MultiQueryRetriever 

	from langchain.chains import RetrievalQA

	 

	import os

	 

	# 连接本地部署的OpenAI服务

	model = ChatOpenAI(

	    streaming=True,

	    verbose=True,

	    callbacks=[],

	    openai_api_key="none",

	    openai_api_base="http://127.0.0.1:8000/v1",

	    model_name="Qwen-7B-Chat",

	    temperature=0

	)

	 

	# 加载Documents

	base_dir = './files' # 文档的存放目录

	documents = []

	for file in os.listdir(base_dir): 

	    # 完整的文件路径

	    file_path = os.path.join(base_dir, file)

	    if file.endswith('.pdf'):

	        loader = PyPDFLoader(file_path)

	        documents.extend(loader.load())

	    elif file.endswith('.docx'):

	        loader = Docx2txtLoader(file_path)

	        documents.extend(loader.load())

	    elif file.endswith('.txt'):

	        loader = TextLoader(file_path)

	        documents.extend(loader.load())

	 

	text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=10) # 文档分割器

	chunked_documents = text_splitter.split_documents(documents)

	 

	# 创建 embeedings

	model_id = "damo/nlp_corom_sentence-embedding_chinese-base"

	embeddings = ModelScopeEmbeddings(

	    model_id=model_id)

	 

	# 加载文档到向量数据库

	vectorstore = Qdrant.from_documents(

	    documents=chunked_documents, # 以分块的文档

	    embedding=embeddings, # 用OpenAI的Embedding Model做嵌入

	    location=":memory:",  # in-memory 存储

	    collection_name="documents") # 指定collection_name

	 

	# 构建一个MultiQueryRetriever

	retriever_from_llm = MultiQueryRetriever.from_llm(retriever=vectorstore.as_retriever(), llm=model)

	 

	# 实例化一个RetrievalQA链

	qa_chain = RetrievalQA.from_chain_type(model, retriever=retriever_from_llm)

	result = qa_chain("填入你的问题")

	 

	print(result)

在上面代码中,首先连接本地部署的OpenAI服务,创建出了model,随后使用 RecursiveCharacterTextSplitter 进行文本分割,设置一个文档块大小为200,重叠字符长度为10。之后初始化Embeeding模型,并使用Qdrant作为向量数据库,读如文档数据并进行Embeeding将自然语言存储成向量。之后查询器使用了MultiQueryRetriever,其特点是使用语言模型从不同的视角为给定的用户输入查询生成多个查询。 然后使用这些查询来检索一组相关文档。下一步,使用RetrievalQA构建了一个Chain,作用是先检索后生成,即检索增强生成。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值