大模型行业报告丨《量子计算发展态势研究报告(2024年)》

量子计算是以量子比特为基本单元,利用量子叠加和干涉等原理实现信息处理的一种计算方案,具有经典计算无法比拟的信息表征能力和超强并行处理能力,为解决特定计算复杂问题提供指数级加速。量子计算是“第二次量子革命”的重要标志,可以带动计算能力实现跨越式发展,有望颠覆和重塑传统技术体系对于信息处理和问题解决的模式,为经济社会发展带来前所未有的机遇。

2024年9月25日,在2024中国国际信息通信展览会(PT展)上,中国信息通信研究院(简称“中国信通院”)、中移(苏州)软件技术有限公司和北京玻色量子科技有限公司联合发布《量子计算发展态势研究报告(2024年)》。中国信通院技术与标准研究所王敬对报告进行了解读。

在这里插入图片描述

量子计算是以量子比特为基本单元,利用量子叠加和干涉等原理实现信息处理的一种计算方案,具有经典计算无法比拟的信息表征能力和超强并行处理能力,为解决特定计算复杂问题提供指数级加速。量子计算是“第二次量子革命”的重要标志,可以带动计算能力实现跨越式发展,有望颠覆和重塑传统技术体系对于信息处理和问题解决的模式,为经济社会发展带来前所未有的机遇。

2024年9月25日,在2024中国国际信息通信展览会(PT展)上,中国信息通信研究院(简称“中国信通院”)、中移(苏州)软件技术有限公司和北京玻色量子科技有限公司联合发布《量子计算发展态势研究报告(2024年)》。中国信通院技术与标准研究所王敬对报告进行了解读。

在这里插入图片描述

来源:中国信息通信研究院

加快发展新质生产力,是高质量发展的应有之义,是抢占新一轮全球科技革命和产业变革制高点、开辟发展新领域新赛道、培育发展新动能、增强竞争新优势的战略选择。数字经济作为科技革命和产业变革的前沿阵地,本质上代表着先进生产力,是支撑新质生产力变动发展的重要力量。本报告聚焦数字经济赋能新质生产力发展进行各个维度深度研究。

数字经济为生产力三大要素的优化组合提供基础。一是催生新型劳动力对象。 数据要素成为劳动力对象的新增组成部分,数据与传统劳动力对象相互融合也构成了新的劳动力对象,更加丰富的劳动力对象创造了满足更加多元化、个性化需求的物质基础。二是塑造新型劳动资料。 数字经济推动劳动资料从实体形态向虚拟形态延伸,全球深化拓展劳动资料的作用范围,劳动资料分布在现象中心化与分散化并存的网络。

三是培养新型劳动者。 数字技术大幅提升劳动者数字技能,深刻改变劳动者工作方式,催生了自主创业、兼职就业等灵活就业新模式,以工业机器人成代表的智能装备在劳动过程中得到广泛应用,极大拓展了劳动者内涵和外延。

数字经济塑造新质生产力三大动力。 一是推动技术创新方式变革。 数字经济通过重构和优化技术创新方式,加速覆性技术涌现,强化创新协同效应,提升创新体系整体效能,推动技术创新向更大规模、更高效率、更强协同的范式演进。二是推动生产要素配置优化。

企业扩展生产可能性边界。同时,数字经济减少生产要素配置摩擦,使要素资源得到更有效地配置和利用。三是推动产业深度转型升级。 数字经济通过赋能劳动者和劳动资料,推动建设现代化产业体系,打造新的经济增长点,加快传统产业向高端化、智能化、绿色化转型升级,培育新兴产业发展壮大,加快新质生产力的发展。

总体来看,新形势、新背景下,我国新质生产力发展已经取得了显著成效,全要素生产率水平持续提升。但也要看到,我国全要素生产率水平仍不高,新质生产力发展空间依然较大。面对“十四五”及更长期,要充分释放数字经济对发展新质生产力的关键支撑作用,加快推动数字经济高质量发展。一是以数字技术产业创新发展,推动新质生产力动力变革。 推进核心技术自主创新,健全技术创新支撑体系,强化企业创新主体地位。二是以数据要素价值充分释放,推动新质生产力要素变革。 推动数据资源开放共享,引导数据健康有序流通,促进数据资源高效利用。三是以现代化产业体系建设,推动新质生产力载体变革。 加快改造提升传统产业,培育新兴产业和未来产业,提升产业链供应链协同和安全水平。四是以生产关系适应性优化,推动新质生产力制度变革。 加快建设全国统一大市场,完善实体经济和数字经济融合体制机制,积极参与全球数字经济治理。

在这里插入图片描述

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

<think>嗯,用户问机器学习的就业前景如何,我需要先了解当前市场的情况。首先,机器学习作为人工智能的核心技术,应用领域非常广泛,比如互联网、金融、医疗、自动驾驶等等。这些行业发展势头如何呢?互联网行业虽然竞争激烈,但大厂仍在持续招聘,尤其是算法工程师和数据科学家。金融行业在风控和量化交易方面需求大,医疗领域在影像分析和药物研发上应用增多。自动驾驶虽然还在发展初期,但不少公司投入巨大,人才需求也在上升。 接下来要考虑的是不同岗位的需求。机器学习工程师、数据科学家、算法研究员这些职位在市场上的供需情况如何?可能需要查一下最新的招聘数据,比如拉勾、猎聘或者LinkedIn上的职位数量。另外,薪资水平也是一个重要指标,高薪职位是否依然集中在头部企业?还有地域分布,北上广深杭这些一线城市机会更多,但二线城市是否也在增长? 行业趋势方面,技术更新换代快,比如深度学习、强化学习、迁移学习这些方向的发展对就业有什么影响?企业是否更倾向于招聘有实际项目经验的人才?还有,现在很多公司开始注重AI的可解释性和伦理问题,这是否会催生新的岗位需求? 竞争情况方面,近来机器学习相关专业的毕业生数量激增,竞争是否变得更加激烈?企业是否提高了招聘门槛,比如要求更高的学历(硕士、博士)、更多的项目经验或者竞赛成绩?此外,跨领域人才的需求,比如同时懂医疗和机器学习的复合型人才,是否更具优势? 政策因素也不能忽视,国家在人工智能方面的支持政策,比如“十四五”规划中的相关部分,是否促进了行业发展?同时,数据安全和隐私保护法规(比如GDPR、中国的个人信息保护法)是否对岗位需求有影响,比如需要更多的合规专家? 最后,未来展望方面,机器学习技术的普及是否会导致基础岗位的饱和,而高端研发岗位依然紧缺?持续学习的重要性,比如跟进最新的论文、框架、工具,对职业发展的影响有多大?还有,创业公司和传统企业的转型带来的机会如何? 需要把这些点组织起来,结构清晰,分行业应用、岗位需求、技能要求、薪资水平、竞争情况、政策影响、未来趋势等方面来回答。同时,要给出实际的数据或例子,比如引用某招聘网站的报告,或者具体行业的案例,增强说服力。还要注意语言通俗易懂,避免专业术语过多,让不同背景的读者都能理解。</think>当前机器学习领域的就业前景呈现**「冰火两重天」**的态势,我们通过行业需求、技能溢价、岗位分布三维度进行解析: --- ### 一、行业需求热度梯度(2024Q2数据) ```mermaid graph TD A[第一梯队] --> A1[AI大模型研发] & A2[自动驾驶感知系统] B[第二梯队] --> B1[金融风控建模] & B2[医疗影像分析] C[第三梯队] --> C1[传统制造业预测维护] & C2[电商推荐系统] D[收缩领域] --> D1[基础数据标注] & D2[简单特征工程] ``` - **头部企业**:OpenAI类研发岗硕士起薪$280k(H1B签证数据) - **腰部企业**:商业银行算法工程师平均月薪45k(拉勾网数据) - **尾部淘汰**:Python+sklearn套模板岗位减少67%(智联招聘统计) --- ### 二、技能溢价金字塔 #### 💎 顶层溢价技能(供需比<0.3) - 大模型微调(LoRA/P-Tuning) - CUDA底层优化(NVIDIA Jetson部署) - 多模态对齐(CLIP架构魔改) #### ⚒️ 中层保值技能(供需比0-0.6) - Transformer源码级实现 - 联邦学习系统搭建 - 因果推断建模 #### ⚠️ 基层贬值技能(供需比>1.2) - 传统机器学习调参(XGBoost/SVM) - 数据清洗ETL - 基础深度学习框架使用 --- ### 三、岗位分布新趋势 #### 1. **研发岗两极分化** - 高端:需顶会论文(NeurIPS/ICLR)+开源项目star>500 - 基础岗:要求落地3个以上百万级用户项目 #### 2. **复合型岗位崛起** - 医疗+ML:需同时掌握DICOM协议和nnUNet框架 - 法律+ML:要求熟悉GPT-4在合同审查中的应用 #### 3. **地域集群效应** - 北京:大模型研发中心(单卡A100算力成本下降37%) - 杭州:电商推荐系统聚集地(双11算法优化岗激增) - 成都:卫星遥感图像处理新增长极(国家航天局合作项目) --- ### 四、2024关键转折点 1. **学历门槛**: - 头部企业算法岗博士占比提升至42%(2023为28%) - 技术报告替代传统简历(GitHub仓库>学历证明) 2. **薪资结构**: - 基础薪资占比下降至60% - 算力资源包(等效2,000小时A100使用权)成新福利 3. **合规要求**: - GDPR-C认证成为欧盟项目准入门槛 - 数据血缘追踪能力纳入岗位JD --- ### 五、生存指南(2024-2026) #### 🛡️ 防御策略 - 掌握**CUDA C++**扩展开发(抵御AutoML冲击) - 构建**领域知识壁垒**(如FDA医疗器械审批流程) #### ⚔️ 进攻策略 - 参与**Kaggle新赛道**(时空序列预测奖金池$500k) - 开发**边缘计算方案**(TensorRT优化能力溢价300%) #### 💼 转型方向 - AI产品经理(需通过NPDP认证) - MLOps工程师(掌握Kubeflow+Pachyderm) --- 当前机器学习领域正经历**「从算法红利期向工程深水区」**的转型,建议从业者重点关注:大模型轻量化部署、具身智能系统开发、量子机器学习交叉领域三大方向,把握未来3窗口期。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值