分享一些基于结构化数据的RAG的优势和特点

本文探讨了结构化数据在RAG(Retrieval-AugmentedGeneration)中的优势,包括减少信息损失、提高效率、灵活性和易于扩展。它通过直接利用原始数据和LLM交互,避免了传统方法的局限,为文档检索和答案生成提供了更优解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近年来,随着自然语言处理和机器学习技术的不断发展,基于结构化数据的RAG(Retrieval-Augmented Generation)方法逐渐受到了广泛关注。相较于传统的RAG方法,基于结构化数据的RAG在准确性、高效性、灵活性和易扩展性等方面具有诸多优势和特点。本文将从这几个方面对基于结构化数据的RAG进行深入探讨。

0df06a02329102601ed101bbb95c3bf2.jpeg

准确性

基于结构化数据的RAG避免了传统RAG方法中数据向量化和语义搜索过程中可能出现的信息损失和语义不匹配问题。通过直接利用原始数据和大型语言模型(LLM)的交互,基于结构化数据的RAG提高了RAG的准确率。结构化数据的特征和属性都是明确的,可以用有限的标签集进行描述,且可以用标准的查询语言进行检索,因此不会出现信息损失或语义不匹配的情况。此外,LLM只需要根据用户的问题提取出核心信息和条件,并形成标准的查询语句,而不需要理解整个文档的语义,减少了LLM的幻觉的可能性。

高效性

基于结构化数据的RAG提高了RAG的效率,省去了数据向量化和语义搜索的过程,直接使用标准查询和原始数据进行回复。数据向量化和语义搜索的过程耗时且资源密集,需要对海量的文本数据进行处理和计算,并需要存储和更新大量的向量数据。相比之下,结构化数据RAG只需要对结构化数据进行标准查询,这是一个非常快速和简单的过程,并且结构化数据的存储和更新也更为便捷和节省空间。

e5309607f874a9fb41d5d1b0f2e74a64.jpeg

灵活性

基于结构化数据的RAG提高了RAG的灵活性,适应不同的数据源和查询需求。只要数据是结构化的,就可以用这种方法进行RAG。结构化数据是一种通用且广泛的数据格式,可以表示各种信息和知识,例如表格、数据库、XML等。此外,结构化数据的查询语言也是标准和通用的,例如SQL、SPARQL等。因此,结构化数据RAG的方法可以应用于不同的领域和场景,只要将用户的问题转化为相应的查询语言,就可以实现RAG。

易扩展性

基于结构化数据的RAG提高了RAG的易扩展性,方便地增加或修改数据和查询,而不需要重新进行数据向量化和语义搜索。数据向量化和语义搜索的过程是固定和封闭的,一旦数据或查询发生变化,就需要重新进行数据向量化和语义搜索,这是一个耗时且复杂的过程,可能会影响已有的数据和查询的结果。相比之下,结构化数据RAG只需要对结构化数据进行增加或修改,就可以实现数据的更新,不会影响其他数据的查询。此外,结构化数据RAG也可以方便地增加或修改查询,只要修改查询语句,就可以实现查询的更新,不会影响其他查询的结果。

1d419ec0af1cc484b7db6ce414a90ee6.jpeg

综上所述,基于结构化数据的RAG在准确性、高效性、灵活性和易扩展性方面具有显著优势,为文档检索和答案生成领域带来了新的可能性。随着自然语言处理和机器学习技术的不断进步,基于结构化数据的RAG方法将在各种应用中发挥重要作用,为用户提供更加准确、高效、灵活和易扩展的信息检索和答案生成服务。

### 如何基于 Elasticsearch 构建 RAG 系统 构建 RAG(检索增强生成)系统的核心在于将传统的搜索引擎功能与现代的大规模语言模型相结合,从而提升信息检索生成的质量。以下是关于如何利用 Elasticsearch 来实现这一目标的具体方法。 #### 1. 数据准备与预处理 在构建 RAG 系统之前,需要对数据进行充分的清洗、结构化以及存储。Elasticsearch 提供了强大的索引机制,可以高效地管理大规模的数据集[^1]。为了更好地支持后续的检索操作,通常还需要引入多模态数据解析工具来提取文本特征并将其转化为适合检索的形式[^4]。 #### 2. 创建自定义插件或扩展现有框架 通过 Python 或其他编程语言编写接口程序连接到 Elasticsearch 实例上,并封装成易于使用的 API 接口。例如,在 Flask Web 应用中可以通过如下方式加载相关模块: ```python from rag_elasticsearch import chain as rag_elasticsearch_chain add_routes(app, rag_elasticsearch_chain, path="/rag-elasticsearch") ``` 此代码片段展示了如何在一个典型的服务器端脚本里集成定制化的 RAG 流程逻辑[^2]。 #### 3. 查询改写与语义理解 当用户输入自然语言形式的问题时,可能并不完全匹配数据库内的记录条目。因此有必要借助 NLP 技术先对其进行同义词替换或者上下文补全等处理后再提交给底层 ES 引擎执行查找任务。此外还可以考虑采用更高级别的策略比如重新表述原始请求串以便获得更加精准的结果列表[^3]。 #### 4. 多路检索与结果融合 单一维度上的简单关键词匹配往往难以满足复杂应用场景下的需求;为此建议综合运用 BM25 距离度量法以及其他机器学习算法共同作用于候选文档集合之上进而选出最有可能相关的若干项作为最终返回值呈现出来。这种方法能够有效提高查准率的同时兼顾覆盖面广的优势特性。 #### 5. 结果排序与展示优化 除了单纯依赖分数高低决定先后顺序之外还应该考虑到用户体验方面因素的影响权重分配比例调整等问题。具体而言就是根据不同类型的反馈信号动态调节各个参数之间的关系使得整体表现达到最优状态水平线以上标准。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值