NumPy堆叠数组

垂直堆叠(Vertical Stacking)

np.vstack

np.vstack函数用于在垂直方向上堆叠数组,即沿着第一个轴(对于二维数组来说是行)进行连接。

import numpy as np  

a = np.array([[1, 2, 3], [4, 5, 6]])  
b = np.array([[7, 8, 9], [10, 11, 12]])  
  
# 使用 np.vstack 在垂直方向上堆叠这两个数组  
c = np.vstack((a, b))  
  
print(c)

'''
[[ 1  2  3]
 [ 4  5  6]
 [ 7  8  9]
 [10 11 12]]
'''

水平堆叠(Horizontal Stacking)

np.hstack

np.hstack函数用于在水平方向上堆叠数组,即沿着第二个轴(对于二维数组来说是列)进行连接。

import numpy as np  
  
a = np.array([[1, 2, 3], [4, 5, 6]])  
b = np.array([[7, 8, 9], [10, 11, 12]]) 
  
# 使用 np.hstack 在水平方向上堆叠这两个数组(注意,要求数组的行数相同)  
c = np.hstack((a, b))  
  
print(c)

'''
[[ 1  2  3  7  8  9]
 [ 4  5  6 10 11 12]]
'''

注意,当使用np.hstack时,需要确保数组在第一个维度(即行数)上是兼容的。

np.concatenate

更通用的方法是使用np.concatenate,它允许指定沿哪个轴连接数组。

使用np.concatenate进行垂直堆叠,应传递具有相同列数的数组,并将axis参数设置为0; 对于水平堆叠,应传递具有相同行数的数组,并将axis参数设置为1。

# 沿着第一个轴(行)连接,类似于 vstack  
c_vertical = np.concatenate((a, b), axis=0)  
print(c_vertical) 

'''
[[ 1  2  3]
 [ 4  5  6]
 [ 7  8  9]
 [10 11 12]]
'''

# 沿着第二个轴(列)连接,类似于 hstack  
c_horizontal = np.concatenate((a, b), axis=1)  
print(c_horizontal)  

'''
[[ 1  2  3  7  8  9]
 [ 4  5  6 10 11 12]]
'''
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值