强化学习中的环境的理解:黑箱函数

在强化学习中,环境可以被看作是一个黑箱函数,因为它对智能体(agent)来说通常是不透明的。智能体只能通过与环境进行交互来学习如何完成任务。在每个时间步,智能体会选择一个动作(action)并将其发送给环境。然后,环境会根据这个动作和当前的状态(state)来决定下一个状态和给予智能体的奖励(reward)。

  1. 初始状态:环境开始于一个初始状态 S_0
  2. 智能体动作:智能体基于当前状态S_t选择一个动作A_t
  3. 环境反馈:环境接收动作 A_t,并返回新的状态S_{t+1} 和奖励 R_{t+1}。奖励是对上一个动作A_t的评价。
  4. 循环继续:智能体根据新状态S_{t+1}选择下一个动作,循环继续直到满足某个终止条件(如达到最大步数或智能体达到目标状态)。

在这个过程中,环境的作用是根据智能体的动作来更新状态并提供奖励信号,而智能体的任务则是学习如何选择能够最大化长期奖励的动作。这种交互允许智能体通过试错(trial and error)来学习环境的动态性并优化其行为策略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值