在强化学习中,环境可以被看作是一个黑箱函数,因为它对智能体(agent)来说通常是不透明的。智能体只能通过与环境进行交互来学习如何完成任务。在每个时间步,智能体会选择一个动作(action)并将其发送给环境。然后,环境会根据这个动作和当前的状态(state)来决定下一个状态和给予智能体的奖励(reward)。
- 初始状态:环境开始于一个初始状态 。
- 智能体动作:智能体基于当前状态选择一个动作。
- 环境反馈:环境接收动作 ,并返回新的状态 和奖励 。奖励是对上一个动作的评价。
- 循环继续:智能体根据新状态选择下一个动作,循环继续直到满足某个终止条件(如达到最大步数或智能体达到目标状态)。
在这个过程中,环境的作用是根据智能体的动作来更新状态并提供奖励信号,而智能体的任务则是学习如何选择能够最大化长期奖励的动作。这种交互允许智能体通过试错(trial and error)来学习环境的动态性并优化其行为策略。