nn.ModuleList使用示例

本文介绍了PyTorch中nn.ModuleList的作用,它是一个存储可学习参数模块的容器,对于设计多层结构的深度学习模型提供了便利。通过实例展示如何使用nn.ModuleList构建包含多个SimpleLinear层的MLP模型,并进行前向传播操作。
摘要由CSDN通过智能技术生成

nn.ModuleList 是 PyTorch 中的一个容器类,它是 nn.Module 的子类,专门用于存储一组可学习参数的神经网络层或者其他任何继承自 nn.Module 类的模块nn.ModuleList 为设计和实现复杂的深度学习模型提供了便利和灵活性,特别是在需要堆叠多层结构时。

import torch
import torch.nn as nn

# 定义一个简单的全连接层类
class SimpleLinear(nn.Module):
    def __init__(self, in_features, out_features):
        super(SimpleLinear, self).__init__()
        self.linear = nn.Linear(in_features, out_features)

    def forward(self, x):
        return self.linear(x)

# 定义一个多层感知机模型,其中包含3个SimpleLinear层
class MLP(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers=3):
        super(MLP, self).__init__()
        self.layers = nn.ModuleList([SimpleLinear(input_size if i == 0 else hidden_size, hidden_size) for i in range(num_layers)])

    def forward(self, x):
        for layer in self.layers:
            x = layer(x)
        return x

# 创建一个MLP模型
input_size = 10
hidden_size = 5
num_layers = 3
model = MLP(input_size, hidden_size, num_layers)

# 打印模型结构
print(model)

# 假设一个样本数据
sample_input = torch.randn(1, input_size)  # 一个批量大小为1,特征维度为10的样本

# 前向传播并输出结果
output = model(sample_input)
print("Output of MLP:", output.shape)  # 输出结果的形状

输出:

MLP(
  (layers): ModuleList(
    (0): SimpleLinear(
      (linear): Linear(in_features=10, out_features=5, bias=True)
    )
    (1-2): 2 x SimpleLinear(
      (linear): Linear(in_features=5, out_features=5, bias=True)
    )
  )
)
Output of MLP: torch.Size([1, 5])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值