nn.ModuleList
是 PyTorch 中的一个容器类,它是 nn.Module
的子类,专门用于存储一组可学习参数的神经网络层或者其他任何继承自 nn.Module
类的模块。nn.ModuleList
为设计和实现复杂的深度学习模型提供了便利和灵活性,特别是在需要堆叠多层结构时。
import torch
import torch.nn as nn
# 定义一个简单的全连接层类
class SimpleLinear(nn.Module):
def __init__(self, in_features, out_features):
super(SimpleLinear, self).__init__()
self.linear = nn.Linear(in_features, out_features)
def forward(self, x):
return self.linear(x)
# 定义一个多层感知机模型,其中包含3个SimpleLinear层
class MLP(nn.Module):
def __init__(self, input_size, hidden_size, num_layers=3):
super(MLP, self).__init__()
self.layers = nn.ModuleList([SimpleLinear(input_size if i == 0 else hidden_size, hidden_size) for i in range(num_layers)])
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
# 创建一个MLP模型
input_size = 10
hidden_size = 5
num_layers = 3
model = MLP(input_size, hidden_size, num_layers)
# 打印模型结构
print(model)
# 假设一个样本数据
sample_input = torch.randn(1, input_size) # 一个批量大小为1,特征维度为10的样本
# 前向传播并输出结果
output = model(sample_input)
print("Output of MLP:", output.shape) # 输出结果的形状
输出:
MLP(
(layers): ModuleList(
(0): SimpleLinear(
(linear): Linear(in_features=10, out_features=5, bias=True)
)
(1-2): 2 x SimpleLinear(
(linear): Linear(in_features=5, out_features=5, bias=True)
)
)
)
Output of MLP: torch.Size([1, 5])