强化学习中的loss函数:【优化Q值】还是【优化策略】?

在强化学习中,Q-learning或基于值函数的强化学习方法对于网络参数的调整是基于"优化Q值",而策略梯度方法或Actor-Critic方法则是基于"优化策略"。

1. 优化Q值(如:Q-learning)

在Q-learning中,我们试图学习一个Q函数,该函数可以预测在给定状态下采取某个动作的预期回报。Loss函数通常表示为预测Q值与实际Q值(通过贝尔曼方程计算得到)之间的均方误差。

import torch  
import torch.nn as nn  
import torch.optim as optim  
  
class QNetwork(nn.Module):  
    # ... (定义网络结构)  
  
# 实例化网络和优化器  
q_network = QNetwork()  
optimizer = optim.Adam(q_network.parameters(), lr=0.001)  
  
# 假设我们有一批转换数据:(states, actions, rewards, next_states, dones)  
# 其中,dones是一个表示终止状态的布尔数组  
  
# 预测Q值  
predicted_q_values = q_network(states).gather(1, actions.unsqueeze(1)).squeeze(1)  
  
# 使用贝尔曼方程计算目标Q值  
next_max_q_values = q_network(next_states).max(1)[0]  
target_q_values = rewards + (1 - dones) * 0.99 * next_max_q_values  
  
# 计算loss  
loss = nn.MSELoss()(predicted_q_values, target_q_values.detach())  
  
# 反向传播和优化  
optimizer.zero_grad()  
loss.backward()  
optimizer.step()


2. 优化策略(如:Actor-Critic)

在Actor-Critic方法中,我们有两个网络:Actor网络和Critic网络。Actor负责生成动作,Critic评估Actor生成的动作。Loss函数通常包括两部分:策略梯度loss(用于优化Actor)和价值函数loss(用于优化Critic)。

import torch  
import torch.nn as nn  
import torch.optim as optim  
import torch.nn.functional as F  
  
class Actor(nn.Module):  
    # ... (定义Actor网络结构)  
  
class Critic(nn.Module):  
    # ... (定义Critic网络结构)  
  
# 实例化网络和优化器  
actor = Actor()  
critic = Critic()  
actor_optimizer = optim.Adam(actor.parameters(), lr=0.001)  
critic_optimizer = optim.Adam(critic.parameters(), lr=0.001)  
  
# 假设我们有一批数据:(states, actions, rewards, next_states, dones)  
# 以及由Actor网络生成的动作概率log_probs和Critic网络评估的状态值values  
  
# 计算优势函数A(s, a) = Q(s, a) - V(s),这里简化处理,直接使用rewards作为Q(s, a)的近似值  
advantages = rewards - values  
  
# Actor的loss函数:策略梯度loss,使用log概率乘以优势函数来计算  
actor_loss = -torch.mean(log_probs * advantages.detach())  
  
# Critic的loss函数:均方误差loss,用于预测状态值V(s)与目标状态值(使用TD误差计算)之间的误差  
td_errors = rewards + (1 - dones) * 0.99 * critic(next_states) - values  
critic_loss = nn.MSELoss()(values, td_errors.detach())  
  
# 反向传播和优化Actor网络  
actor_optimizer.zero_grad()  
actor_loss.backward()  
actor_optimizer.step()  
  
# 反向传播和优化Critic网络  
critic_optimizer.zero_grad()  
critic_loss.backward()  
critic_optimizer.step()
  • 10
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是基于 PyTorch 实现的强化学习 Q-Learning 优化 UNet 训练的学习率自定义惩罚函数和动作的详细代码实现。 ``` import torch import torch.nn as nn import torch.optim as optim import numpy as np class CustomUNet(nn.Module): def __init__(self): super(CustomUNet, self).__init__() # define your UNet architecture here def forward(self, x): # define your forward pass here class QLearning: def __init__(self, unet, lr=0.001, gamma=0.9, epsilon=1.0, eps_min=0.01, eps_dec=0.9999): self.unet = unet self.target_unet = CustomUNet() self.target_unet.load_state_dict(self.unet.state_dict()) self.memory = [] self.lr = lr self.gamma = gamma self.epsilon = epsilon self.eps_min = eps_min self.eps_dec = eps_dec self.optimizer = optim.Adam(self.unet.parameters(), lr=self.lr) def choose_action(self, state): if np.random.random() < self.epsilon: # choose random action return np.random.choice([0, 1, 2, 3]) else: # choose action with highest Q-value state = torch.FloatTensor(state).unsqueeze(0) q_values = self.unet(state) action = torch.argmax(q_values).item() return action def store_transition(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) def learn(self): if len(self.memory) < BATCH_SIZE: return # sample batch from memory batch = np.random.choice(len(self.memory), BATCH_SIZE, replace=False) states, actions, rewards, next_states, dones = zip(*[self.memory[i] for i in batch]) # convert to tensors states = torch.FloatTensor(states) actions = torch.LongTensor(actions) rewards = torch.FloatTensor(rewards) next_states = torch.FloatTensor(next_states) dones = torch.FloatTensor(dones) # calculate Q-values for current state and next state q_values = self.unet(states) next_q_values = self.target_unet(next_states) next_q_values[dones] = 0.0 # apply custom penalty to incorrect actions penalty = torch.zeros_like(q_values) penalty[torch.arange(len(actions)), actions] = -1.0 q_values += penalty # calculate target Q-values target_q_values = rewards + self.gamma * torch.max(next_q_values, dim=1)[0] # calculate loss and update parameters loss = nn.functional.smooth_l1_loss(q_values.gather(1, actions.unsqueeze(1)), target_q_values.unsqueeze(1)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # update target network self.target_unet.load_state_dict(self.unet.state_dict()) # decrease exploration rate self.epsilon = max(self.eps_min, self.epsilon*self.eps_dec) ``` 在上面的代码,我们定义了一个自定义的 UNet 模型,并使用 Q-Learning 算法对其进行优化。在 `CustomUNet` 类,你可以根据自己的需要自定义 UNet 的架构。在 `QLearning` 类,我们定义了以下函数: - `choose_action(state)`:根据当前状态选择一个动作。 - `store_transition(state, action, reward, next_state, done)`:将当前状态、动作、奖励、下一个状态和完成标志存储到记忆。 - `learn()`:从记忆取一个样本,计算当前状态和下一个状态的 Q ,然后计算目标 Q ,并使用 smooth L1 损失函数计算损失并更新模型参数。我们还使用一个自定义的惩罚函数来惩罚错误的动作。最后,我们将目标网络的参数更新为当前网络的参数,并减少探索率。 请注意,我们使用 PyTorch 内置的 `Adam` 优化器来更新模型参数,并使用 `smooth_l1_loss` 损失函数来计算损失。我们还定义了一些超参数,例如学习率、折扣因子和探索率等。你可以根据自己的需要更改这些超参数。 希望这个代码实现能够帮助你理解如何使用强化学习 Q-Learning 优化 UNet 训练的学习率自定义惩罚函数和动作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值