ultralytics-YOLOv11的分割解析(网络结构与损失)

1. Python调用

模型预测:

def segment_predict():
    model = YOLO('../weights/segment/yolo11n-seg.pt')
    print(model)
    results = model('../ultralytics/assets/bus.jpg')
    if not os.path.exists(results[0].save_dir):
        os.makedirs(results[0].save_dir)
    for result in results:
        filename = result.path.split("\\")[-1]
        filedir = result.save_dir + "\\" + filename
        result.save(filedir)

运行结果:

模型训练,同样基于coco8数据集

# Load a model
    model = YOLO("yolo11n-seg.yaml").load("yolo11n.pt")  # build from YAML and transfer weights
    # Train the model
    results = model.train(data="coco8-seg.yaml", epochs=100, imgsz=640, device="0")
    # Evaluate model performance on the validation set
    metrics = model.val()
    # Perform object detection on an image
    results = model("../ultralytics/assets/bus.jpg")
    results[0].show()
    # Export the model to ONNX format
    path = model.export(format="onnx")  # return path to exported model

2. 网络结构图 

分割的网络结构图主体部分与检测部分相同,只是Detect部分增加了Proto与Pred_mask而已。

图2-1 yolo11-segment网络结构图

3. 损失函数

3.1 损失函数定位

与Detection部分相同,训练函数都是调用BaseTrainer中的train函数,其中不同的是训练类与模型类都是继承自Detection中的类,另外分割的损失为类v8SegmentationLoss,用流程图定位损失函数的走向如图3-1所示,其中损失函数以类的方式定义。

图3-1 yolo11-segment的损失函数定位

3.2 损失函数具体分析

(1) 前向推理与构造anchor

segment的前向推理包括detection的feats,segment的pred_mask和proto,具体代码如下所示。其中anchor的构建如

### YOLO11-seg 技术概述 YOLO11-seg 是一种基于YOLO架构的目标检测和分割模型,该模型不仅能够识别图像中的物体位置,还能提供像素级别的分类信息。这种能力使得YOLO11-seg在自动驾驶、医疗影像分析等领域具有广泛应用前景[^2]。 ### 获取YOLO11-seg 模型文件 为了获取YOLO11-seg的具体实现及其预训练权重文件,可以从官方GitHub仓库下载对应的`.pt`格式模型文件: - **下载链接**: [yolo11n-seg.pt](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) 通过上述链接可以直接获得已经过优化处理的YOLO11-seg版本,方便快速部署到实际应用场景中去测试效果。 ### 安装依赖库克隆代码库 对于希望深入了解YOLO11-seg内部机制以及参改进工作的开发者来说,建议先安装必要的Python包,并从源码级别开始探索此项目: ```bash git clone https://github.com/ultralytics/ultralytics.git cd ultralytics pip install -r requirements.txt ``` 这段命令会将最新的Ultralytics框架复制到本地环境中,并自动解决所有必需的第三方依赖项[^3]。 ### 转换模型至OpenVINO兼容格式 如果计划利用Intel OpenVINO工具套件加速推理过程,则需按照特定流程完成YOLOv5系列模型向IR(Intermediate Representation)中间表示形式转变的工作。具体操作指南可参阅相关文档部分关于如何配置OpenVINO C++开发环境的内容[^1]。 ### 使用教程概览 一旦成功加载了YOLO11-seg模型之后,用户可以借助于提供的API接口轻松调用预测功能。通常情况下,仅需几行简单的Python脚本就能实现实时视频流上的目标检测实例分割任务。更多细节请查阅官方README.md文件内的示例代码片段。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值