ultralytics-YOLOv11的目标检测解析

1. Python的调用

from ultralytics import YOLO
import os
def detect_predict():
    model = YOLO('../weights/yolo11n.pt')
    print(model)
    results = model('../ultralytics/assets/bus.jpg')
    if not os.path.exists(results[0].save_dir):
        os.makedirs(results[0].save_dir)
    for result in results:
        filename = result.path.split("\\")[-1]
        filedir = result.save_dir + "\\" + filename
        result.save(filedir)

运行结果:

模型训练,基于coco8数据:

from ultralytics import YOLO
def detect_train():
    model = YOLO("yolo11l.pt")  # Load a model
    train_results = model.train(   # Train the model
        data="coco8.yaml",  # path to dataset YAML
        epochs=100,  # number of training epochs
        imgsz=640,  # training image size
        device="0",  # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
    )
    metrics = model.val()  # Evaluate model performance on the validation set
    results = model("../ultralytics/assets/bus.jpg")  # Perform object detection on an image
    results[0].show()
    # Export the model to ONNX format
    path = model.export(format="onnx")  # return path to exported model

2. 网络结构图

图2-1 yolo11-detection网络结构图

其中depth参数控制C3k2,即C3k2_X中,X*depth.

3. 损失函数

3.1 损失函数的定位

ultralytics中损失函数定位:ultralytics.engine.train()-->ultralytics.engine.trainer.train()--> ultralytics.engine.trainer._do_train(),其中以下为调用损失位置:

即模型的前向推理过程触发损失函数计算。同debug到该处,获取模型名称如下:

DetectionModel类中的函数如下:

其中DetectionModel函数继承自BaseModel,损失调用如下

经debug调用self.loss函数,其中ultralytics.utls.loss.v8DetectionLoss函数是具体损失计算位置

self.criterion(preds, batch)形式调用,即v8DetectionLoss类中的__call__函数,具体如下

3.2 损失函数具体分析

(1) 前向推理与anchor构造

前向处理分成三个尺度: ,其中B表示batch_size,

。通过debug模式三个尺度生成的list如下:

需要把三个尺度分成预测类别(80个类别)和检测框,其中 ,具体如下:

以三个尺度构造anchor,其中以每个方格中心点作为anchor_point,三个尺度总共有8400个anchor_point,如图3-1所示。通过debug获取全部anchor_points与anchor_points对应的stride_tensor,如下:

图3-1 anchor_point的构造

(2) GT目标框与预测框构建

GT目标框的构建,包括batch_idx,cls,bboxes,得到 ,其中n表示batch中的标注的目标框数量,6=1+4+1。

 self.preprocess函数的作用是输出 ,构建B个 的矩阵,其中 表示B个图像中标注框最大的数量,不足最大数量的行设置为全0,5表示cls+bbox

预测框的构建主要是函数bbox_decode,即对前向推理的pred_distri根据anchor_points对pred_distri做解码操作。解码时,pred_distri由 变为 ,具体是16个预测值做softmax后与[0,1,2,…,15]做矩阵乘法,如下 

然后pred_dist得到的是左上角、右下角距离每个anchor_point中心点的距离,通过dist2bbox转换为xyxy形式的坐标,如下所示。anchor_points为中心点的坐标,最后得到预测bboxes。 

 (3) 任务分配器

任务分配器即ultralytics.utils.tal.TaskAlignedAssigner类,主要实现以该类的forward函数。其中主要的函数为get_pos_mask、select_highest_overlaps、get_targets。

1) get_pos_mask:获取anchor预测真实框的mask

def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):
    """Get in_gts mask, (b, max_num_obj, h*w)."""
    mask_in_gts = self.select_candidates_in_gts(anc_points, gt_bboxes)  # mask_in_gts:4x7x8400
    # Get anchor_align metric, (b, max_num_obj, h*w)
    align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts * mask_gt)
    # Get topk_metric mask, (b, max_num_obj, h*w)
    mask_topk = self.select_topk_candidates(align_metric, topk_mask=mask_gt.expand(-1, -1, self.topk).bool())
    # Merge all mask to a final mask, (b, max_num_obj, h*w)
    mask_pos = mask_topk * mask_in_gts * mask_gt
    return mask_pos, align_metric, overlaps

select_candidates_in_gts函数的主要作用是根据真实框lt、rb距离anchor_point的距离初步筛选获取mask_in_gts。其中筛选的条件是四个距离值大于1e-9,如图3-2所示。该函数输出如下:

其中mask_in_gts表示0或1的矩阵。

 图3-2 有效anchor_point的筛选

get_box_metrics主要是计算预测框与一个batch的GT框的CIOU,以及一个batch的GT类别位置处预测score,通过这两个计算得到align_metric。其中该函数的mask_gt的计算由select_candidates_in_gts获取的mask_in_gts与一个batch的mask_gt(xyxy坐标不为0则表示有目标,否则没有目标)相乘得到,mask_in_gts: ,mask_gt: 。然后得到新的mask_gt: ,如下所示,后续的score与box框的筛选都根据新mask_gt获取。

构造batch_idx与cls_idx,如下 

根据构造的idx从pd_scores(bx8400x80)中获取mask_gt相应位置值,然后赋值给bbox_scores,mask_gt的其余部分为0,如下 

 分别扩展pd_bboxes、gt_bboxes(原始pd_bboxes:bx8400x4,原始gt_bboxes:bx7x4),使其两则维度相同,然后通过新mask_gt筛选预测框与真实框,通过CIOU计算overlaps,如下

最后计算align_metric,其中bbox_scores: bx7x8400, overlaps: bx7x8400,计算公式如下

alpha=0.5,beta=6.0。

 select_topk_candidates由align_metric筛选top10候选mask_topk。其中该函数的输入topk_mask由mask_gt: 复制topk中的k=10份得到topk_mask: 。筛选align_metric中top10的值与idx,如下

 其中topk_idxs的值域为[0,8400),topk_metrics,topk_idxs,topk_mask尺寸都为 。返回mask_topk的尺寸为

 最后merge所有的mask返回为mask_pos,其中mask_topk、mask_in_gts大小为 ,mask_gt大小为 ,具体代码如下

2) select_highest_overlaps:当一个anchor分配多个检测框时,选择overlap最大的

def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
    """Select anchor boxes with highest IoU when assigned to multiple ground truths."""
    # Convert (b, n_max_boxes, h*w) -> (b, h*w)
    fg_mask = mask_pos.sum(-2)
    if fg_mask.max() > 1:  # one anchor is assigned to multiple gt_bboxes
        mask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1)  # (b, n_max_boxes, h*w)
        max_overlaps_idx = overlaps.argmax(1)  # (b, h*w)
        is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device)
        is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1)
        mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float()  # (b, n_max_boxes, h*w)
        fg_mask = mask_pos.sum(-2)
    # Find each grid serve which gt(index)
    target_gt_idx = mask_pos.argmax(-2)  # (b, h*w)
    return target_gt_idx, fg_mask, mask_pos

mask_pos: ,overlaps: ,mask_multi_gts获取一个anchor预测多个gt框的位置,max_overlaps_idx每个anchor中overlap值最大的位置获取,通过torch.where更新mask_pos,即一个anchor分配多个框时,选择overlap最大GT,分配到该anchor上。最后返回fg_mask(anchor中分配GT框的mask)、target_gt_idx(anchor中分配GT框的idx)、

尺寸大小的mask_pos。

3) get_targets

def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
    # Assigned target labels, (b, 1)
    batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
    target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes  # (b, h*w) 值域[0,b*n_max_boxes)
    # gt_labels.long.flatten() (b*n_max_boxes,)
    target_labels = gt_labels.long().flatten()[target_gt_idx]  # (b, h*w)  # 每个anchor预测的类别号
    # Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w, 4)
    target_bboxes = gt_bboxes.view(-1, gt_bboxes.shape[-1])[target_gt_idx]  # 每个anchor预测框的坐标bbox
    # Assigned target scores
    target_labels.clamp_(0)
    # 10x faster than F.one_hot()
    target_scores = torch.zeros(
        (target_labels.shape[0], target_labels.shape[1], self.num_classes),
        dtype=torch.int64,
        device=target_labels.device,
    )  # (b, h*w, 80)
    target_scores.scatter_(2, target_labels.unsqueeze(-1), 1)
    fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes)  # (b, h*w, 80)
    target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)  # 通过fg_scores_mask限制target_scores
    return target_labels, target_bboxes, target_scores

 target_gt_idx是[0,n_max_boxes-1]的值,更新索引值,不同batch_idx索引唯一,如下

构造one-hot的target_scores,每个anchor都是one-hot,长度为80,如下

最后返回 的target_labels, 的target_bboxes, 大小one-hot的target_scores。

任务分配器最后步骤是做归一化处理,如下所示。

# Normalize
align_metric *= mask_pos
pos_align_metrics = align_metric.amax(dim=-1, keepdim=True)  # [b, max_num_obj, 1]
pos_overlaps = (overlaps * mask_pos).amax(dim=-1, keepdim=True)  # [b, max_num_obj, 1] 值域[0,1]
# align_metric/pos_align_metrics值域[0,1],尺寸为b, max_num_obj, 8400
norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1) # [b, 8400, 1]
target_scores = target_scores * norm_align_metric  # [b,8400,80] * [b,8400,1]

最终TaskAlignedAssigner返回五个参数,如下

 (4) 损失计算

Cls loss通过BCE计算,pred_scores与target_scores的尺寸为 ,其中BCE的计算公式如下:

Box loss计算loss_iou与loss_dfl,具体的计算如下

# Bbox loss
if fg_mask.sum():
    target_bboxes /= stride_tensor  # [b,8400,4] / [8400,1]
    loss[0], loss[2] = self.bbox_loss(  # 计算loss_iou, loss_dfl
        pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask
    )
loss[0] *= self.hyp.box  # box gain = 7.5
loss[1] *= self.hyp.cls  # cls gain = 0.5
loss[2] *= self.hyp.dfl  # dfl gain = 1.5
return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

 bbox_loss中的计算代码如下,其中包括loss_iou与loss_dfl两部分。

weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)  # 计算权重,target_scores:b,8400,80, fg_mask:b,8400
iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)  # 在fg_mask下,计算真实框与预测框CIoU
loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum  # iou损失计算

# DFL loss
if self.dfl_loss:
    target_ltrb = bbox2dist(anchor_points, target_bboxes, self.dfl_loss.reg_max - 1)  # box转换成距中心点距离 [b, h*w, 4]
    # pred_dist[fg_mask]:210x64-->840x16, target_ltrb[fg_mask]:210x4
    loss_dfl = self.dfl_loss(pred_dist[fg_mask].view(-1, self.dfl_loss.reg_max), target_ltrb[fg_mask]) * weight
    loss_dfl = loss_dfl.sum() / target_scores_sum  # 与iou损失一样,除以target_scores_sum
else:
    loss_dfl = torch.tensor(0.0).to(pred_dist.device)

return loss_iou, loss_dfl

然后DFLoss如下,主要是对预测距离与真实距离做交叉熵,并加权平均计算值。其中左右权重的计算遵循距离值越大,权重就越小的原则。

# pred_dist: n*4x16, target: nx4
target = target.clamp_(0, self.reg_max - 1 - 0.01)  # n, 4
tl = target.long()  # target left 真实框向左取整
tr = tl + 1  # target right  真实框向右取整
wl = tr - target  # weight left  向右取整-目标得到左边的权重
wr = 1 - wl  # weight right  向左取整-目标得到右边的权重
return (  # 左右预测距离与真实距离做交叉熵计算,并乘以权重
    F.cross_entropy(pred_dist, tl.view(-1), reduction="none").view(tl.shape) * wl
    + F.cross_entropy(pred_dist, tr.view(-1), reduction="none").view(tl.shape) * wr
).mean(-1, keepdim=True)

### 使用YOLOv11调用摄像头进行目标检测 对于使用YOLOv11调用摄像头执行目标检测的任务,可以借鉴YOLO系列其他版本的做法。下面提供一段Python代码示例,该实例展示了如何利用`ultralytics`库加载预训练的YOLO模型,并结合OpenCV库从摄像头获取图像帧完成实时的目标检测。 ```python from ultralytics import YOLO # 导入YOLO类用于创建模型对象 import cv2 # OpenCV库用来处理视频流 model = YOLO('yolov11.pt') # 加载YOLOv11模型权重文件 cap = cv2.VideoCapture(0) # 初始化摄像头,参数0通常代表默认摄像头 while True: ret, frame = cap.read() # 获取一帧画面 if not ret: # 如果读取失败则跳出循环 break results = model(frame) # 对当前帧应用YOLO模型做预测 annotated_frame = results[0].plot() # 绘制边界框和其他可视化信息到原图上 cv2.imshow('YOLOv11 Detection', annotated_frame) # 显示带标注的结果窗口 if cv2.waitKey(1) & 0xFF == ord('q'): # 当按'q'键时退出程序 break cap.release() # 关闭摄像头资源 cv2.destroyAllWindows() # 销毁所有opencv打开的窗口 ``` 这段代码实现了基本功能:启动计算机自带或连接的第一个外部摄像头;每秒多次捕捉新帧并对每一帧运行一次YOLOv11模型推断过程;最后,在屏幕上展示经过标记后的图像直到用户按键停止[^2]。 值得注意的是,实际部署过程中可能还需要考虑更多因素,比如性能优化、跨平台兼容性以及特定硬件的支持情况等。此外,由于这里假设使用的YOLOv11模型已经预先训练好并且存储在一个名为'yolov11.pt'的PyTorch checkpoint文件中,因此在尝试此代码前应确保拥有合适的模型文件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值