14.基于人类反馈的强化学习(RLHF)技术详解

基于人类反馈的强化学习(RLHF)技术详解

RLHF 技术拆解

RLHF 是一项涉及多个模型和不同训练阶段的复杂概念,我们按三个步骤分解:

  1. 预训练一个语言模型 (LM) ;
  2. 训练一个奖励模型 (Reward Model,RM) ;
  3. 用强化学习 (RL) 方式微调 LM。

请添加图片描述

步骤一:使用SFT微调预训练语言模型

先收集⼀个提示词集合,并要求标注⼈员写出⾼质量的回复,然后使⽤该数据集以监督的⽅式微调预训练的基础模型。对这⼀步的模型,OpenAI 在其第⼀个流⾏的 RLHF 模型 InstructGPT 中使⽤了较⼩版本的 GPT-3; Anthropic 使⽤了 1000 万 ~ 520 亿参数的 Transformer 模型进⾏训练;DeepMind 使⽤了⾃家的 2800 亿参数模型 Gopher。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

(initial)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值