基于人类反馈的强化学习(RLHF)技术详解
RLHF 技术拆解
RLHF 是一项涉及多个模型和不同训练阶段的复杂概念,我们按三个步骤分解:
- 预训练一个语言模型 (LM) ;
- 训练一个奖励模型 (Reward Model,RM) ;
- 用强化学习 (RL) 方式微调 LM。
步骤一:使用SFT微调预训练语言模型
先收集⼀个提示词集合,并要求标注⼈员写出⾼质量的回复,然后使⽤该数据集以监督的⽅式微调预训练的基础模型。对这⼀步的模型,OpenAI 在其第⼀个流⾏的 RLHF 模型 InstructGPT 中使⽤了较⼩版本的 GPT-3; Anthropic 使⽤了 1000 万 ~ 520 亿参数的 Transformer 模型进⾏训练;DeepMind 使⽤了⾃家的 2800 亿参数模型 Gopher。