支持向量机(SVM)回顾与扩展

前面的博客中对SVM进行了细腻的理论推导。这里,笔者想可以更进一步思考。

重温hard-margin SVM的推导

在SVM中,样本标签是{1,-1},而不是经常接触的{0,1},这样设计是为了便于公式的推导。
w = ∑ i = 1 m α i y i x i w = \sum_{i=1}^m \alpha_iy_ix_i w=i=1mαiyixi,其中m是样本数。
在这里插入图片描述

Kernel Trick

将样本x映射到新的空间 ϕ ( x ) \phi(x) ϕ(x),我们在新的空间里进行hard margin svm。推导过程不变,只需将图片里的x换为 ϕ ( x ) \phi(x) ϕ(x)即可。
f ( x ) = ∑ i = 1 m α i y i ϕ ( x i ) T ϕ ( x ) + b f(x) = \sum_{i=1}^m \alpha_iy_i\phi(x_i)^T\phi(x) + b f(x)=i=1mαiyiϕ(xi)Tϕ(x)+b
核函数就是
k ( x i , x ) = ϕ ( x i ) T ϕ ( x ) k(x_i,x) = \phi(x_i)^T\phi(x) k(xi,x)=ϕ(xi)Tϕ(x)

f ( x ) = ∑ i = 1 m α i y i k ( x i , x ) + b f(x) = \sum_{i=1}^m \alpha_iy_ik(x_i,x) + b f(x)=i=1mαiyik(xi,x)+b

Kernal trick不局限于SVM
any L2-regularized linear model can be kernelized!!!
并且最优 w = ∑ i = 1 m β i x i w = \sum_{i=1}^m \beta_ix_i w=i=1mβixi
首先,我们需要回忆一下soft margin SVM
在这里插入图片描述
本质上,soft-margin SVM是带有L2正则化的hinge loss(合页损失)
通过KKT条件,可知soft-margin svm采用了hinge loss,仍然保持了解的稀疏性

SVR
带有L2正则化的 ϵ \epsilon ϵ不敏感损失,同样解具有稀疏性。

在实际使用中,soft-margin SVM相比hard margin SVM使用的更多。

Kernel Logistic Regression
w = ∑ i = 1 m β i x i w = \sum_{i=1}^m \beta_ix_i w=i=1mβixi带入损失函数中,转为求解 β \beta β的问题
在这里插入图片描述
注意: 不同于SVM, kernel logistic regression的解并不稀疏,因此预测开销很大

Kernel ridge regression:
w = ∑ i = 1 m β i x i w = \sum_{i=1}^m \beta_ix_i w=i=1mβixi带入损失函数中,转为求解 β \beta β的问题
同样是解并不稀疏,预测开销很大

Support Vector Regression(SVR):
解稀疏

SVM为什么转换为对偶问题?

  1. 原始问题是在求解 w w w b b b,所以对于低维数据而言,直接求解原始问题即可,不需要转换为对偶问题。
    当数据维度很高而样本数量有限的时候,转换为对偶问题,因为对偶问题和样本数目有关,和数据维度无关。但实际上,计算内积的时候,和维度还是有关系的。
  2. 转换为对偶问题的另一个优势是:方便引入核函数

李航老师的《统计机器学习》里列出的优点是:

  1. 对偶问题往往更容易求解
  2. 自然引入核函数,进而推广到非线性分类问题
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值