【三种计算样本欧氏距离的方法——样本数据表示为矩阵】

三种计算样本欧氏距离的方法——样本数据表示为矩阵

背景

近期在看CS231n课程,作业中有关于计算图像样本间Kmeans距离的代码编写,涉及到的距离例如为欧氏距离,计算的三种方法效率由低到高,在学习的过程中令我收益匪浅。

假设图像大小为32*32*3=3072,提供5000个训练样本,500个测试样本,将图像矩阵展开为一维向量,则训练样本为5000*3072矩阵,测试样本为500*3072矩阵。

训练样本的标签已知,现要求计算每个测试样本与每个训练样本的欧氏距离,作为测试样本的分类依据,将计算的距离结果存放在dist矩阵中,dist[i][j]表示第i个测试样本与第j个训练样本的欧氏距离。


方法一:双循环逐个计算

对于500个测试样本,5000个训练样本,可以简单的通过两个嵌套的循环遍历计算样本之间的欧氏距离。这是最直观简单的想法,也最容易实现。

def cal_dist_two_loops(train, test):
	"""
	使用两层循环计算欧氏距离
	train为训练样本矩阵,大小为5000*3072
	test为测试样本矩阵,大小为500*3072
	dist为存放样本间距离的矩阵,dist[i][j]表示测试样本i与训练样本j之间的距离
	"""
	num_train = train.shape(0)	# 本文中为5000
	num_test = test.shape(0)	# 本文中为500

	for i in range(num_test):
		for j in range(num_train):
			dist[i][j] = np.sqrt(np.sum(np.square(test[i]-train[j])))

	return dist

在上述代码中,每次取traintest的一行进行相减,实际是1*3072向量每个对应位置的元素相减,之后平方求和即为欧氏距离。


方法二:单循环+部分向量化

单循环即只用到一次循环,部分向量化其实是利用了python中矩阵运算的性质。

	def cal_dist_one_loop(train, test):
		"""
		使用一层循环计算欧氏距离
		变量同cal_dist_two_loops
		"""
		num_train = train.shape(0)
		num_test = test.shape(0)
		
		for i in range(num_test):
			dist[i] = np.sqrt(np.sum(np.square(train - test[i]), axis=1))
	
	return dist

在上述代码中,train是一个5000*3072的矩阵,test[i]1*3072的矩阵(向量),两者大小不同进行相减,在python中会先将test[i]扩展至5000*3072,即一行复制5000份,之后对应位置元素相减,同样平方求和开方得到欧氏距离。
注意:这里一次循环就计算了单个测试样本分别与5000个训练样本之间的距离,axis=1在水平(一行)方向求和,列数化为1,结果为5000*1的向量,赋值给dist[i]


方法三:不使用循环+纯向量化计算

使用循环计算的效率远不如矩阵运算,因此应尽量使用矩阵运算代替循环。对于每一个3072单位大小的图像样本,欧氏距离就是每个像素值相减平方求和再开方,我们将该数学式展开,这样反而有利于我们利用矩阵计算。

( x 1 − y 1 ) 2 + ( x 2 − y 2 ) 2 + . . . + ( x 3072 − y 3072 ) 2 \sqrt{(x_1-y_1)^2+(x_2-y_2)^2+...+(x_{3072}-y_{3072})^2} (x1y1)2+(x2y2)2+...+(x3072y3072)2
x 1 2 + x 2 2 + . . + y 1 2 + y 2 2 + . . . − 2 x 1 y 1 − 2 x 2 y 2 − . . . \sqrt{x_1^2+x_2^2+..+y_1^2+y_2^2+...-2x_1y_1-2x_2y_2-...} x12+x22+..+y12+y22+...2x1y12x2y2...

	def cal_dist_no_loop(train, test):
		"""
		不使用循环计算欧氏距离
		"""
		num_train = train.shape(0)
		num_test = test.shape(0)

		dist += np.sum(np.square(test),axis=1).reshape(num_test, 1)
		dist += np.sum(np.square(train), axis=1).reshape(1, num_train)
		dist -= 2 * np.dot(test, train.T)
		dist = np.sqrt(dist)
		
		return dist
  • np.sum(np.square(test),axis=1)对应测试样本的平方项求和,reshape(500, 1),此时dist大小为500*1,每一个元素都是单样本的3072个平方项和。
  • np.sum(np.square(train), axis=1)对应训练样本的平方项求和,reshape(1,5000),每个元素都是单样本的3072个平方项求和,与dist相加,同样利用python中矩阵相加,大小不一致先扩展,相加后dist大小为500*5000
  • 之后减去两倍交叉项,利用矩阵乘法得到交叉项乘积和,最后求平方根。

总结

利用矩阵的性质进行计算,能够大大提高计算的效率。而如何深入理解矩阵运算,就不得不提到线性代数的重要性了,同时矩阵在python中的运算也有其特点,加以了解并运用才能更好地达成我们的目的。
三种方式运行时间比较

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值