矩阵之间欧式距离的快捷计算方法(无循环)

最近工作中需要用到矩阵中各个样本之间欧氏距离,因此记录一下,如何简便快捷地进行tensor间欧氏距离的计算(使用Pytorch框架)。

按照我之前的想法,会进行两轮或者一轮循环一个个地求出样本间的欧氏距离,但是看过了michuanhaohao/reid-strong-baseline 中Euclidean_dist()方法的运算之后才发现了新大陆---------通过矩阵的方式快速的进行计算。

 

一、理论分析

       首先从理论上介绍 一下,矩阵之间欧氏距离的快速计算,参考了@frankzd 的博客,原文链接在

https://blog.csdn.net/frankzd/article/details/80251042

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值