运筹说 第13期 | 线性规划硬核知识点梳理—数学模型&图解法

本文介绍了线性规划的基础知识,包括线性规划数学模型的三要素、标准形式以及如何将非标准形式转化为标准形式。同时,详细阐述了图解法的步骤、解的类型及其在求解线性规划问题中的启示,帮助读者理解这一重要的运筹学分支。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       线性规划(Linear programming,LP),是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

       通过对线性规划的基础知识的梳理和总结,小编绘制了《线性规划及单纯形法思维导图》,如下所示。线性规划及单纯形法章节一共有5个知识点和15个子知识点。5个知识点分别是线性规划数学模型、图解法、单纯形法的原理、单纯形法计算步骤以及单纯形法的进一步讨论。

  • 第1个知识点是线性规划数学模型,该部分有3个子知识点,包括数学模型的“3要素”、线性规划问题的标准形式“4要求”以及如何将非标准形式转化为标准形式“6准则”;

  • 第2个知识点是图解法,图解法简单直观,便于初学者了解线性规划基本原理和几何意义,但该方法只能用来求解只有两个决策变量的线性规划问题。图解法包括3个子知识点,分别是图解法的步骤、解的类型以及图解法对求解一般线性规划问题单纯形法的启示

  • 第3个知识点是单纯形法原理,该部分有4个子知识点,分别是线性规划问题解的相关概念凸集及其顶点定义定理及引理的证明以及单纯形法迭代原理

  • 第4个知识点是单纯形法的计算步骤,单纯形法适用于任意变量的线性规划问题,其主要有3个子知识点,分别是求初始基可行解并列出初始单纯形表最优性检验转换基可行解

  • 第5个知识点是单纯形法的进一步讨论,包括2个子知识点,分别是添加人工变量后线性规划问题的计算方法,即人工变量法两阶段法,以及单纯形法中解的说明。

      今天,小编先带大家学习一下前两个大知识点,即线性规划的数学模型和图解法。

 一、线性规划的数学模型

01 数学模型的三要素

       线性规划的数据模型由三个要素构成:决策变量、目标函数、约束条件。

       怎样辨别一个模型是线性规划模型?

       其特征是:

  • 问题的目标函数是多个决策变量的线性函数,通常是求最大值或最小值;

  • 问题的约束条件是一组多个决策变量的线性不等式或等式。

       线性规划模型的一般形式为:       用向量形式表达时,上述模型可以写为:

       用矩阵和向量形式来表示可写为:

02 线性规划模型的标准形式

       由于目标函数和约束条件内容及形式上的差距,线性规划问题可以有多种表达式,为了便于讨论和制定统一的算法,规定线性规划问题的标准形式如下:

       标准形式有如下四个特征:

  • 目标函数求max;

  • 约束条件两端用“=”连结;

  • 右端常数项非负;

  • 所有决策变量非负。

03 非标准形式转化为标准形式

       对于不符合标准形式(非标准形式)的线性规划问题,可通过下列方法化为标准形式:

       小编用一个例题带大家更好地了解非标准形式的转化:

二、图解法

       图解法是利用几何图形来求解线性规划问题的一种方法,它简单直观,有助于说明一般线性规划问题求解的基本原理。但图解法只能用于求解只包含两个决策变量的线性规划问题。

01 图解法步骤

       图解法的步骤可以概括为:建立平面直角坐标系;图示约束条件求可行域;图示目标函数;寻找最优解。如下所示:

02 解的结局

       线性规划问题的求解可能会出现四种结局,分别是有唯一的最优解、无穷多最优解、无界解以及无解或无可行解。

03 图解法启示

  • 求解线性规划问题时,解的情况有:唯一最优解、无穷多最优解、无界解、无可行解;

  • 若线性规划问题的可行域存在,则可行域是一个凸集;

  • 若线性规划问题的最优解存在,则最优解或最优解之一一定是可行域的凸集的某个顶点;

  • 解题思路是,先找出凸集的任一顶点,计算在顶点处的目标函数值。比较周围相邻顶点的目标函数是否比这个值大,如果为否,则该顶点就是最优解的点或最优解的点之一,否则转到比这个点的目标函数值更大的另一顶点,重复上述过程,一直到找出使目标函数值达到最大的顶点为止。

       通过小编的整理,大家是否对线性规划有了更清晰的了解和认识呢?那么,快快加入到线性规划的学习中来吧!下次小编将分享单纯形法,敬请关注! 

作者 | 郑鑫  陈优

责编 | 何洋洋

审核 | 徐小峰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值