Improving Named Entity Recognition for Chinese Social Media with Word Segmentation Representation Le

该文提出将分词模型与NER模型融合训练,以增强中文社交媒体的命名实体识别效果。通过LSTM-CRF结构,利用字符的词性embedding、字符embedding及分词模型的隐藏层输出作为特征,论文和代码链接已提供。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

文章主要贡献将训练分词的模型(单向LSTM-CRF)与NER的训练合并来试图提高NER模型的性能。
论文地址: https://arxiv.org/pdf/1603.00786.pdf
代码gitlab地址: https://github.com/hltcoe/golden-horse

模型结构

模型的总体结构如下:
模型结构图
左边是中文分词的模型结构(LSTM+CRF),右边是NER的模型结构,NER模型的CRF前面的最后一层主要使用了三个特征:

  • 字符的词性embedding
  • 字符的embedding,即分词使用的字符embedding
  • 分词模型中每个字符对应的隐藏层的输出(分词模型CRF层前面的一层输出)

训练时的目标函数如下:
在这里插入图片描述
第一项表示分词模型的损失函数,第二项表示NER的损失函数,λ\lambdaλ表示权重,一般更关注NER的结果所以一般

<think>好的,用户需要查找一篇关于通过图基重排序改进RAG的论文。首先,我需要确认用户的需求是什么。他们可能是在研究RAG(检索增强生成)的优化方法,特别是如何利用图结构来进行重排序,提升检索效果。用户提到“图基重排序”,这可能指的是利用图算法或图神经网络对检索到的文档进行重新排序,以提高生成质量。 接下来,我应该回忆一下相关的文献。RAG本身结合了检索和生成,但传统方法可能存在检索结果不够精准的问题,重排序技术可以优化这一点。图结构在信息检索中的应用,比如构建文档之间的关系图,或者利用图嵌入来捕捉文档间的语义关联,可能是一个研究方向。 然后,我需要检查提供的引用内容。引用[1]提到高级RAG技术,包括模块化框架,但没有直接提到图基重排序。引用[2]讨论了RAG的发展和应用场景,但同样没有具体提到图方法。引用[3]是一个原型应用的链接,可能不涉及论文内容。因此,提供的引用中可能没有直接相关的论文,需要引导用户去外部数据库查找。 不过,用户可能希望我根据现有知识推荐可能的论文方向或方法。例如,图神经网络(GNN)在文档重排序中的应用,或者知识图谱增强的RAG系统。此外,可以建议用户搜索关键词如“RAG graph-based reranking”、“GNN for document reranking”或“knowledge graph RAG”来查找相关论文。 另外,考虑到RAG的优化通常涉及检索器和生成器的协同改进,图基方法可能在检索阶段构建文档间的关系,或者在重排序阶段利用这些关系调整顺序。例如,使用PageRank算法或社区检测来评估文档的重要性,进而重新排序。这样的方法可能在信息检索领域有相关研究,用户可能需要查阅最近的顶会论文,如ACL、EMNLP、SIGIR等。 最后,确保回答符合用户的要求:结构清晰、分步解决问题,并引用提供的资料。由于提供的引用中没有直接相关的论文,需要如实告知,并给出建议的搜索方向和关键词,帮助用户自行查找。同时生成相关问题,如优化RAG的其他技术、图基方法的应用场景等。</think>根据您对图基重排序改进RAG的论文需求,结合当前RAG技术发展,以下是分步解答: 1. **研究领域定位** 图基重排序属于RAG技术中检索优化模块的改进方向,需聚焦"检索增强生成"与"图神经网络"交叉领域。引用[1]提到的模块化RAG框架中,重排序模块可作为独立算子存在,这为图算法的集成提供了理论支持[^1]。 2. **推荐搜索策略** - 关键词组合:`"RAG" + ("graph neural network" | "knowledge graph") + reranking` - 会议筛选:优先查看ACL/EMNLP/NAACL/SIGIR近三年论文 - 论文预印平台:arXiv.org使用筛选条件`cs.CL + cs.IR` 3. **相关技术线索** 虽然现有引用未直接提及图基重排序论文,但引用[2]指出模块化RAG支持路由、调度和融合机制的创新设计[^2],这与图结构处理节点关系的能力高度契合。例如: - 使用图注意力机制建模文档间语义关联 - 基于社区发现算法优化检索结果聚类 $$ \text{NodeScore}(d_i) = \sum_{d_j \in N(d_i)} \alpha_{ij}Wv_j $$ 其中$d_i$为文档节点,$N(d_i)$是其邻居节点集 4. **实验性验证方法** 引用[3]提供的Mememo平台支持快速原型开发[^3],可尝试: ```python # 伪代码示例:图基重排序实现 def graph_reranking(docs): graph = build_knowledge_graph(docs) scores = page_rank(graph) return sort_by_score(docs, scores) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值