VGG网络模型

该博客详细介绍了如何使用PyTorch构建VGG16网络,并用其训练一个花卉分类模型。首先定义了VGG网络的结构,包括卷积层和全连接层,然后加载预训练权重。接着,利用 torchvision 库的数据集和数据加载器进行模型训练,设置损失函数和优化器。最后,展示了模型验证过程和训练后的结果,并提供了模型预测的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.网络架构

2.网络搭建

import torch.nn as nn
import torch

# official pretrain weights
model_urls = {
    'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
    'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
    'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
    'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth'
}

class VGG(nn.Module):
    def __init__(self,features,num_classes=1000,init_weights=False):
        super(VGG,self).__init__()
        self.features=features
        self.classifier = nn.Sequential(
            nn.Linear(512*7*7, 4096),
            nn.ReLU(True),
            nn.Dropout(p=0.5),
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(p=0.5),
            nn.Linear(4096, num_classes)
        )
        if init_weights:
            self._initialize_weights()
    
    def forward(self,x):
        # N x 3 x 224 x 224
        x = self.features(x)
        # N x 512 x 7 x 7
        x = torch.flatten(x, start_dim=1)
        # N x 512*7*7
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                # nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

def make_features(cfg:list):
    layers=[]
    in_channels = 3
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2,stride=2)]
        else:
            conv2d = nn.Conv2d(in_channels,v,kernel_size=3,padding=1)
            layers += [conv2d,nn.ReLU(True)]
            in_channels = v
    return nn.Sequential(*layers)


cfgs = {
    'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}

def vgg(model_name="vgg16", **kwargs):
    assert model_name in cfgs, "Warning: model number {} not in cfgs dict!".format(model_name)
    cfg = cfgs[model_name]

    model = VGG(make_features(cfg), **kwargs)
    return model

3.模型训练

import os
import sys
import json
import torch
import torch.nn as nn
from torchvision import transforms,datasets
import torch.optim as optim
from tqdm import tqdm
from model import vgg

def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))

    data_transform = {
        "train":transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))
        ]),
        "val":transforms.Compose([
            transforms.Resize((224,224)),# cannot(224),must(224,224)
            transforms.ToTensor(),
            transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))
        ])
    }

    image_path = './flower_data'
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path,"train"),transform=data_transform["train"])
    train_num = len(train_dataset)
    # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
    flower_list = train_dataset.class_to_idx
    cla_dict = dict((val,key) for key, val in flower_list.items())
    # write dict into json file
    json_str = json.dumps(cla_dict,indent=4)
    with open('class_indices.json','w') as json_file:
        json_file.write(json_str)
    
    batch_size = 32
    nw = min([os.cpu_count(),batch_size if batch_size>1 else 0,8])# number of workers
    print("Using {} dataloader workers every process".format(nw))
    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=batch_size,
        shuffle=True,
        num_workers=nw
    )

    validate_dataset = datasets.ImageFolder(
        root=os.path.join(image_path,"val"),
        transform=data_transform["val"]
    )
    val_num=len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(
        validate_dataset,
        batch_size=4,
        shuffle=False,
        num_workers=nw
    )
    print("using {} images for training,{} images for validation.".format(train_num,val_num))

    model_name = "vgg16"
    net = vgg(model_name=model_name,num_classes=5,init_weights=True)
    net.to(device)
    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(),lr=0.0001)

    epochs = 30
    best_acc = 0.0
    save_path = './{}Net.pth'.format(model_name)
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # train
        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader,file=sys.stdout)
        for step,data in enumerate(train_bar):
            images,labels = data
            optimizer.zero_grad()
            outputs = net(images.to(device))
            loss = loss_function(outputs,labels.to(device))
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()
            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch+1,epochs,loss)

        # validate
        net.eval()
        acc = 0.0  #accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(validate_loader,file=sys.stdout)
            for val_data in val_bar:
                val_images,val_labels = val_data
                outputs = net(val_images.to(device))
                predict_y = torch.max(outputs,dim=1)[1]
                acc+=torch.eq(predict_y,val_labels.to(device)).sum().item()

        val_accurate = acc/val_num
        print("[epoch %d] train_loss:%.3f val_accuracy:%.3f"%(epoch+1,running_loss/train_steps,val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net.state_dict(),save_path)
    print("Finished Training!!!")


if __name__ == '__main__':
    main()

4.模型的检验

import os
import json
from pyexpat import model
import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
from model import vgg

def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    data_transform = transforms.Compose([
        transforms.Resize((224,224)),
        transforms.ToTensor(),
        transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))
    ])

    # load image
    img_path = "./tulip.jpg"
    assert os.path.exists(img_path),"file:'{}' does not exist.".format(img_path)
    img = Image.open(img_path)

    plt.imshow(img)
    # [N,C,H,W]
    img = data_transform(img)
    # expand batch dimension
    img = torch.unsqueeze(img,dim=0)

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path),"file:'{}' does not exist.".format(json_path)

    with open(json_path,"r") as f:
        class_indict = json.load(f)
    
    # create model
    model = vgg(model_name="vgg16",num_classes=5).to(device)
    # load model weights
    weights_path = "./vgg16Net.pth"
    assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
    model.load_state_dict(torch.load(weights_path, map_location=device))

    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()

    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
                                                 predict[predict_cla].numpy())
    plt.title(print_res)
    for i in range(len(predict)):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
                                                  predict[i].numpy()))
    plt.show()

if __name__ == '__main__':
    main()

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Caoyy686868

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值