【Paper】Origin绘制误差棒图(标准差围绕均值)

本文介绍了如何使用Origin软件绘制误差棒图,该图常用于展示数据的平均值及标准差。首先,准备包含X轴值、均值和标准差的数据。接着,在Origin中调整列属性并导入数据。然后,美化图形,如调整曲线样式和透明度。最后,进行细节调整,如添加坐标轴信息和图例,以完成专业级的误差棒图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
最近遇到一张图,就是那种长线条,观感很好的那种,引人入胜的那种图,明白吗?

在这里插入图片描述
好好好,就是下面这张:
在这里插入图片描述
可以发现,有三条线对应样本平均值,而标准差则通过上下半透明的范围实现,绝!

🐯: 这个绝图叫什么名字呢?
😼: 就是大名鼎鼎的误差棒图!
🐯: 用EXCEL可以画吗?
😼: EXCEL应该有点难度。。不如试试Origin~

软件官方介绍链接:https://www.originlab.com/index.aspx?go=PRODUCTS/Origin
在这里插入图片描述
ok,现在假设你已经安装好了Origin,下面就开始真正的表演了!

数据准备

现在假设我们有2类样本(Y和Z),每类样本有500个。

首先需要准备5列数据,分别是X,Y_mean,Y_sd,Z_mean,Z_sd
分别对应X轴序号,Y均值,Y标准差,Z均值,Z标准差。
在这里插入图片描述

Origin格式调整

在Origin里将列属性调整成我们准备的
在这里插入图片描述

Origin数据导入

全部从Excel复制过来就好啦
在这里插入图片描述

Origin图形美化

双击图形,调整均值曲线
在这里插入图片描述
然后将标准差的范围调整成透明
(录屏软件突然有点问题,保存的颜色有点变化,不过问题不大,看清过程就行)
在这里插入图片描述
可以发现现在红色曲线的透明范围,好像不是纯红,而有一些灰?
想这种和预判不符的情况,重启软件就好啦
在这里插入图片描述

Origin图形细化

下面就是一些小细节修改

比如添加坐标轴信息,修改字体
在这里插入图片描述
修改坐标轴范围,图例。
又绿屏了,凑合看吧~
在这里插入图片描述

Origin图片保存

做出来的图怎么保存呢?直接复制为图片就好啦。
在这里插入图片描述
在这里插入图片描述

Origin小技巧

如果在作图中遇到奇奇怪怪的事情,先重启Origin试下!
一张做好的图可以右键复制格式到另一张图上~

猜你喜欢:👇🏻
【Paper】英文文章图表规范和文献引用格式
【Visio】Visio图片在Word中显示不全?如何确定Visio作图大小?
【论文】引用格式 NoteExpress管理文献

在这里插入图片描述

绘制均值误差棒图是一种常见的数据可视化方法,用于展示一组数据的平均值以及其不确定性范围(例如标准差、置信区间等)。这种图表可以帮助我们更直观地理解数据的变化趋势及波动情况。 以下是绘制均值误差棒图的基本步骤: 1. **准备数据** - 首先需要有一组或多组数据样本,并计算出每组数据的均值 (mean) 和对应的误差值(如标准差 stddev 或者置信区间 confidence interval 等)。 2. **选择工具** 常见的数据绘图工具有 Python 的 Matplotlib 库、Seaborn 库或者其他专业软件比如 Excel、Origin 等。 3. **使用Matplotlib绘制错误棒图示例** ```python import numpy as np import matplotlib.pyplot as plt # 数据点 x 轴位置及其对应均值 y x = np.arange(0.5, 5.5, 1) mean_y = [6.4, 7.8, 9.2, 10.5] errors = [0.8, 1.0, 1.2, 1.5] # 每个点的标准偏差或其他度量误差 # 创建布并设置标题 fig, ax = plt.subplots() ax.errorbar(x, mean_y, yerr=errors, fmt='-o', ecolor='red', capsize=5) ax.set_title('Mean and Error Bars') ax.set_xlabel('X-axis Label') ax.set_ylabel('Y-axis Label') plt.show() ``` 上述代码片段展示了如何利用 `matplotlib` 中的 `errorbar()` 函数快速生成带误差棒的图形。其中关键参数解释如下: - `x`: 定义了 X轴上各点的位置; - `y`: 对应于每个 X轴坐标上的 Y值也就是该处所有测量结果取算术平均得到的结果; - `yerr`: 表达的是上下浮动幅度即不确定性的大小,默认表示正负方向都存在同样的偏移量;如果只给出单一数值则统一应用于全部节点; - `fmt`: 控制线型样式 (-), 标记形状(o); - 其他选项像颜色(ecolor) 及端帽宽度(capsize)进一步美化图像细节部分。 通过以上操作就可以轻松制作出清晰易懂又美观大方的“均值+误差”柱状统计图表啦!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值