【数据结构】超详细讲解:算术表达式转化为后缀表达式、前缀表达式、表达式树的构建

本文介绍了中缀表达式、后缀表达式和前缀表达式的基本概念,以及如何将中缀表达式转换为后缀和前缀表达式。后缀表达式和前缀表达式常用于无歧义的计算,可以借助栈进行高效计算。此外,文章还阐述了使用表达式树来表示和处理算术表达式的方法。
摘要由CSDN通过智能技术生成

在这里插入图片描述

  • 作者:努力学习的大一在校计算机专业学生,热爱学习和创作。目前在学习和分享:算法、数据结构、Java等相关知识。
  • 博主主页: @是瑶瑶子啦
  • 所属专栏: 【数据结构】:该专栏专注于数据结构知识,持续更新,每一篇内容优质,浅显易懂,不失深度!
  • 近期目标:写好专栏的每一篇文章

在这里插入图片描述

一、什么是中缀表达式、后缀表达式、前缀表达式

  • 中缀表达式:
    中缀表达式是我们常见的数学表达式,其中运算符放置在两个操作数中间,例如:3 + 4 * 2。在中缀表达式中,还可以包含括号,用于改变运算符的优先级。

  • 后缀表达式:
    后缀表达式(也称为逆波兰表达式)是一种将运算符放置在操作数后面的表达式,例如:3 4 2 * 1 5 - 2 ^ / +。在后缀表达式中,所有操作符的优先级相同,而括号则不再需要。

  • 前缀表达式:
    前缀表达式(也称为波兰表达式)是一种将运算符放置在操作数前面的表达式,例如:+ / * 3 4 2 ^ - 1 5 2。前缀表达式和后缀表达式的计算方式相同,只是运算符的位置不同。

其中,后缀表达式和前缀表达式都是一种无歧义的表示方法,可以通过栈来快速计算。在计算机科学中,后缀表达式比较常用,因为它可以通过栈来轻松地实现表达式的计算。

一般我们所讲“算术表达式”,没有特别强调时,都是指的“中缀表达式”,也就是最常见的那种

通过后缀表达式进行计算可以按照以下步骤进行:

  1. 创建一个空栈,用于存储数字。
  2. 从左到右扫描后缀表达式的每个元素。
  3. 如果当前元素是数字,则将其压入栈中。
  4. 如果当前元素是操作符,则依次弹出栈顶的两个数字,进行相应的运算,并将结果压入栈中。
  5. 当后缀表达式扫描完毕后,栈中的唯一元素就是表达式的最终结果。

以下是一个示例,计算后缀表达式 “3 4 2 * 1 5 - 2 ^ / +”:

后缀表达式操作
3压栈3
4压栈3 4
2压栈3 4 2
*弹栈计算并压栈3 8
1压栈3 8 1
5压栈3 8 1 5
-弹栈计算并压栈3 8 -4
2压栈3 8 -4 2
^弹栈计算并压栈3 8 16
/弹栈计算并压栈0.1875
+弹栈计算并压栈3.1875

因此,后缀表达式 “3 4 2 * 1 5 - 2 ^ / +” 的计算结果为 3.1875。

二、中缀转后缀

要将算术表达式转换为逆波兰表达式,可以按照以下步骤进行:

  1. 创建一个空的栈,用于存储操作符。
  2. 从左到右扫描中缀表达式的每个元素。
  3. 如果当前元素是操作数,则直接输出到逆波兰表达式中。
  4. 如果当前元素是操作符,则进行如下操作:
    • 如果该操作符为左括号 “(”,则将其压入栈中。
    • 如果该操作符为右括号 “)”,则将栈中的操作符弹出并输出,直到遇到左括号为止。
    • 如果该操作符为其他操作符,则根据其优先级和结合性,依次将栈中比它优先级高或等于它的操作符弹出并输出,然后将该操作符压入栈中。
  5. 当中缀表达式扫描完毕后,如果栈中还有操作符,则依次弹出并输出。

最终输出的结果就是逆波兰表达式。

算术表达式 a+b*(c+d/e) 转化为后缀表达式的过程如下:

中缀表达式操作后缀表达式
a输出a
+压栈+a
b输出+a b
*压栈+ *a b
(压栈+ * (a b
c输出+ * (a b c
+压栈+ *( +a b c
d输出+ * ( +a b c d
/压栈+ * ( + /a b c d
e输出+ * ( + /a b c d e
)弹栈输出+ *a b c d e /
结束弹栈输出a b c d e / + * +

因此,算术表达式 a+b*(c+d/e) 转化为后缀表达式为 a b c d e / + * +

三、中缀转前缀

  1. 将中缀表达式翻转。
  2. 将所有括号方向翻转,即左括号变为右括号,右括号变为左括号。
  3. 将翻转后的中缀表达式转化为后缀表达式
  4. 再次将后缀表达式翻转,得到前缀表达式。

例如,将中缀表达式 a+b*c-d/e 转化为前缀表达式的过程如下:

  1. 将中缀表达式翻转:e/d-c*b+a
  2. 将翻转后的中缀表达式转化为后缀表达式:ed/ cb* - a+
  3. 再次将后缀表达式翻转,得到前缀表达式:+a -*c/b de

因此,中缀表达式 a+b*c-d/e 转化为前缀表达式为 +a -*c/b de。

四、使用表达式树

将算术表达式转换为二叉树的过程可以使用表达式树的方法实现,具体步骤如下:

  1. 将算术表达式转化为后缀表达式。
  2. 从左到右扫描后缀表达式的每个元素:
    • 如果当前元素是操作数,则创建一个只包含该操作数的节点,并将该节点压入栈中。
    • 如果当前元素是操作符,则创建一个只包含该操作符的节点,并从栈中弹出两个节点作为其左右子节点,再将该节点压入栈中。
  3. 最后栈中唯一的节点即为根节点,整个树的结构已经建立完成。

例如,将算术表达式 a+b*(c+d/e) 转化为二叉树的过程如下:

  1. 将算术表达式转化为后缀表达式:abcde/+*+
  2. 从左到右扫描后缀表达式的每个元素:
    • a:创建一个只包含 a 的节点,并将该节点压入栈中。
    • b:创建一个只包含 b 的节点,并将该节点压入栈中。
    • c:创建一个只包含 c 的节点,并将该节点压入栈中。
    • d:创建一个只包含 d 的节点,并将该节点压入栈中。
    • e:创建一个只包含 e 的节点,并将该节点压入栈中。
    • /:创建一个只包含 / 的节点,并从栈中弹出两个节点 e 和 d 作为其左右子节点,再将该节点压入栈中。
    • +:创建一个只包含 + 的节点,并从栈中弹出两个节点 c 和 / 作为其左右子节点,再将该节点压入栈中。
    • *:创建一个只包含 * 的节点,并从栈中弹出两个节点 b 和 + 作为其左右子节点,再将该节点压入栈中。
    • +:创建一个只包含 + 的节点,并从栈中弹出两个节点 a 和 * 作为其左右子节点,再将该节点压入栈中。
  3. 根节点为最后剩余在栈中的节点 +。

因此,算术表达式 a+b*(c+d/e) 转化为的二叉树如下:

      +
     / \
    a   *
       / \
      b   +
         / \
        c   /
           / \
          d   e

转换完成后,该二叉树的前序遍历对应前缀表达式中序对应中缀表达式后序遍历对应后缀表达式

这是一个需要使用栈的后进先出特性来实现的简单计器。用户输入一个包含圆括号、加、减、乘、除、求余等符号组成的算术表达式字符串,程序将其转换为后缀表达式,并输出后缀表达式。然后,程序利用后缀表达式表达式的值,并输出结果。 实现这个计器需要注意以下几点: 1. 首先,需要定义一个栈来存储运符和操作数。在遍历输入的算术表达式字符串时,如果遇到数字,就将其压入栈中;如果遇到运符,就将其与栈顶元素进行比较,如果优先级高于栈顶元素,则将其压入栈中;否则,就将栈顶元素弹出,并将运符与其进行运,然后将结果压入栈中。 2. 在将算术表达式转换为后缀表达式时,需要使用一个栈来存储运符。遍历输入的算术表达式字符串时,如果遇到数字,就将其输出;如果遇到运符,就将其与栈顶元素进行比较,如果优先级高于栈顶元素,则将其压入栈中;否则,就将栈顶元素弹出,并将其输出,直到栈顶元素的优先级低于当前运符,然后将当前运符压入栈中。 3. 在计后缀表达式时,需要使用一个栈来存储操作数。遍历后缀表达式时,如果遇到数字,就将其压入栈中;如果遇到运符,就将栈顶的两个元素弹出,并进行运,然后将结果压入栈中。 通过以上步骤,就可以实现一个简单的计器,能够处理包含圆括号、加、减、乘、除、求余等符号的算术表达式,并输出表达式的值。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是瑶瑶子啦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值