矩阵变换
以Ax = b为例,x是m维向量,b是n维向量,m,n可以相等也可以不相等,表示矩阵可以将一个向量线性变换到另一个向量,这样一个线性变换的作用可以包含旋转、缩放和投影三种类型的效应。
迹
X∈P(n×n),X=(xii)的主对角线上的所有元素之和称之为X的迹,记为tr(X),即tr(X)=∑xii,矩阵的迹等于特征值之和.
奇异值和特征值
AT*A的特征值的平方根就是矩阵A的奇异值
可以理解为奇异值是特征值的推广,对长方形或者正方形但不满秩的矩阵,我们总可以求其奇异值。对于一般方阵两者不一定有联系。对于对称方阵,对称阵的奇异值等于特征值的绝对值.
奇异值都是非负的,而特征值可能是负的
特征值分解和奇异值分解都是给一个矩阵(线性变换)找一组特殊的基,特征值分解找到了特征向量这组基,在这组基下该线性变换只有缩放效果。而奇异值分解则是找到另一组基,这组基下线性变换的旋转、缩放、投影三种功能独立地展示出来了。我感觉特征值分解其实是一种找特殊角度,让旋转效果不显露出来,所以并不是所有矩阵都能找到这样巧妙的角度。仅有缩放效果,表示、计算的时候都更方便,这样的基很多时候不再正交了,又限制了一些应用。
共轭转置矩阵
矩阵分为实数矩阵和复数矩阵,实数矩阵的转置仅仅是将矩阵的行和列对掉一下,而复数矩阵的转置除了将行和列对掉,还要将每个元素共轭一下,共轭就是将形如a+bi的数变成a-bi,实数的共轭就是它本身,所以实数矩阵的共轭转置就是这个实数矩阵的转置.
酉矩阵
若一n行n列的复数矩阵U满足
UT U = UUT = In
其中In,为n阶单位矩阵, UT 为U的共轭转置,为酉矩阵(英文: Unitary Matrix, Unitary 是归一或单位的意思)。即,矩阵U为酉矩阵,当且仅当其共轭转置 UT ,为其逆矩阵:
U-1 = U T
若酉矩阵的元素都是实数,其即为正交矩阵。