【直觉建设】线性代数的本质(二)

这篇博客详细探讨了线性代数中的核心概念,包括非方阵线性变换对空间维度的影响、向量点积的几何意义以及对偶性的直观解释。通过实例解析了线性变换如何对应多维空间到数轴的映射,并阐述了对偶性的数学本质。此外,还从线性变换的角度重新理解了叉积,揭示了其计算平行六面体体积的几何本质。最后,作者表达了对理解对偶性这一抽象概念的兴奋之情,并表示将进一步消化和品味这些知识。
摘要由CSDN通过智能技术生成

b站视频线性代数的本质-系列合集(二)

非方针的线性变换 2 ∗ 3 2*3 23的矩阵,代表对三个基向量进行变换,变换后每个基向量仅用二维坐标表示,即此变换将空间从三维变到了二维; 3 ∗ 2 3*2 32的矩阵,表示对两个基向量进行变换,变换后每个基向量由三维坐标表示,即此变换将空间从二维变到了三维; 2 ∗ 3 2*3 23矩阵解线性方程组,解 x x x为三维, v v v为二维,即三个未知数,两个方程,那么此方程组要么无解,要么; 3 ∗ 2 3*2 32矩阵解线性方程组,解 x x x为二维, v v v为三维,即方程组包含两个未知数,三个方程,那么要么无解,要么;(解的个数该如何从直觉上判定?
向量点积两个向量间做点积实际上就是一个向量 x x x到另一个向量 y y y方向上的长度乘以向量 y y y的长度;点积的计算方式是一个向量的转置与另一个向量做矩阵乘法,这种矩阵乘法可以看作是一个 1 ∗ 2 1*2 12的变换矩阵 x x x作用于 2 ∗ 1 2*1 21的向量 y y y(以二维空间为例),变换矩阵 x x x表示对两个基向量进行变换,变换后每个基向量用一维坐标表示;而投影就相当于将其中一个向量 x x x(转置为 1 ∗ 2 1*2 12的向量)映射到另一个向量 y y y 2 ∗ 1 2*1 21的向量)的方向/空间上,即当前者作为变换矩阵时,后者代表其在变换前的空间的坐标,前者就应该表示两个基向量映射到一维空间后的新坐标;重点来了,根据对称性原理,我们发现两个基向量映射到一维空间后的新坐标,恰好是未经过转置的向量 x x x的原坐标(因为将 i i i映射到 x x x就相当于将 x x x映射到 i i i j j j同理)。最后,点积这个运算,其实相当于一个向量 x x x到另一个向量 y y y方向上的长度乘以向量 y y y的长度这一点得证
对偶性在线性代数中的表现:每当你看到一个多维空间到数轴的线性变换时,它都与那个空间中的唯一一个向量对应。也就是说,映射到数轴的线性变换跟与这个向量点乘等价。对这一点的解释是:一个映射到数轴的线性变换矩阵,是一个行向量,它代表这个矩阵变换是由n个基向量映射而来,映射后每个基向量用一维向量来表示;将这个变换矩阵跟某个向量 v v v相乘,在数值上相当于将矩阵转置得到的向量与 v v v做点乘(至于为什么数值上相等,参考上面对于向量点积的解释)
对偶性:两种数学事物之间自然而又出乎意料的对应关系。在上面那个实例中,我们可以说,一个多维空间中的向量,其对偶是一种将此多维空间转化为数轴的线性变换。换句话说,多维空间中的向量可以看作是一种空间变换的物质载体(想象向量比想象空间变换更容易)
叉积的标准认知:两个向量的叉积,在数值上等于这两个向量张成的平行四边形的面积,同时,数值还有正负之分,如果两者叉乘的顺序与基向量的顺序一致,则为正,相反则为负。在计算时,可以用行列式来计算这个平行四边形的面积,其正负性则依据行列式对应的矩阵变换是否改变了空间的走向来确定。然而,两个向量叉积的结果其实仍然是一个向量,大小就依据上面的方法,而方向则使用右手定则来确定。
从线性变换的角度认识叉积:我们知道,叉积是两个向量得到另一个向量的运算,也就是一共三个向量,我们可以取三个向量,构成行列式,三维空间中的行列式是三个向量构成的平行六面体的体积。我们将其中一个向量看作自变量 x x x,另外两个向量分别是 v v v w w w,当自变量 x x x变化时,整个六面体的体积也会变化。我们知道,一个三维行列式,其实可以看作是将三维空间转化为数轴的一种矩阵变换(当前,这种变换中我们固定了一个自变量 x x x,因此这个矩阵变换也可以看作是对这个自变量 x x x的函数),根据线性代数中的对偶性,我们能够找到一个三维空间中的变量 p p p,它与自变量 x x x点乘能够等价于这个作用于自变量 x x x的矩阵变换,则现在目标变成了向量 p p p
这个向量 p p p应该满足一个什么条件呢? p p p x x x点乘,等价于以 x x x为第一列, v v v为第二列, w w w为第三列的矩阵的行列式。 p p p这个向量的方向:它与向量 x x x运算的结果,是一个三维空间中的行列式,也就是一个以 x x x v v v w w w构成的平行六面体的体积,体积等于底面积( v v v w w w张成的平行四边形的面积)乘以高(垂直于 v v v w w w的平行四边形的方向上, x x x的投影),而 p p p x x x点乘,代表其中一个向量投影到另一个向量上,这里可以是将 x x x投影到 p p p上,则 p p p的方向是垂直于 v v v w w w张成的平行四边形;再讨论 p p p的长度, p p p x x x点乘,在数值上等于将 x x x投影到 p p p的方向上的长度(投影长度)乘以 p p p的长度,投影长度等于平行六面体的高,那么 p p p的长度应该是 v v v w w w张成的平行四边形的面积,正负则由行列式的规则决定,即 p p p v v v w w w是否满足右手定则。则,向量 p p p应该是长度等于 v v v w w w张成的平行四边形的面积,方向垂直于 v v v w w w张成的平行四边形的一个向量。
最后,将我们设定的自变量 x x x替换成单位基向量,就可以得到叉积的计算公式了。

这两节太难了,思考了好久,总算是将将理解,总结出来了,感觉以后还是要继续品味。
开心的是,这次总算是理解了对偶的概念,之前学运筹学的时候,就是似懂非懂的状态,这次可以系统的进行了解了,很棒!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值