
在 AI 技术飞速发展的当下,我们尝试探讨一个话题:那些曾经在工业时代教育体系下脱颖而出的“学霸”们,为何在今天感到了前所未有的焦虑?我们又该如何重新定义自己的价值?
01
现状:AI 技术变革下,学霸们的“护城河”危机
在这场技术变革的浪潮中,最先感受到寒意的,恰恰是那些曾经站在金字塔尖的人。
微观视角的崩塌:护城河的消失
在很长一段时间里,“写代码”被视为理工科精英的专属护城河。一个 985 院校计算机专业的毕业生,凭借对复杂逻辑的掌控和对编程语言的熟练运用,足以在社会中占据一个优越的生态位。然而,这道护城河正在被 AI 填平。

在现如今程序员的日常工作中,变化已经在发生。比如:以前前后端开发有着严格的界限,一名专注于后端的架构师如果需要一个前端演示界面,往往受制于人,必须申请资源、等待排期。而现在,借助 AI,后端人员可以轻松生成高质量的前端代码,反之亦然。
在 AI 的加持下,技术栈的壁垒被彻底打破,“人人都是全栈工程师”不再是空谈,甚至一个人的能力边界可以进一步延伸,覆盖产品经理和设计师的工作。代码的门槛,在 AI 面前消融了。
更让从业者感到寒意的是,这种冲击并不仅限于基础的“搬砖”工作。即便是被视为金字塔尖的“算法工程师”——那些负责设计神经网络架构、优化模型训练方法的顶级智力工作——也未能幸免。
现在,当研究人员拿到一份开源代码和相关的学术论文,完全可以将它们投喂给大模型。大模型不仅能理解复杂的数学原理,还能针对现有的网络架构提出具体的变更建议,甚至直接给出优化后的训练方法。在很多时候,AI 给出的建议效果惊人地好。
这意味着,原本属于 985 学霸的“智力高地”,正在被 AI 涉足。那些曾经被引以为傲的、认为只有人类高智商大脑才能完成的工作,正在被解构为可以被机器批量处理的任务。
宏观背景的“灰犀牛”:被加速的冗余
如果我们将视野拉得更远,会发现 AI 的出现并非孤立事件,它更像是一个催化剂,加速了一个早已存在的宏观趋势。
早在 ChatGPT 惊艳世界之前,一个巨大的“灰犀牛”就已经悄然来临:人类社会进入了“生产力大于消费力”的时代。
而在软件/互联网等行业,“生产力冗余”其实一直存在。过去几十年里,一众优秀的工程师在“996”的节奏中开发了成千上万的产品,但最终能推向市场、被用户看到的只是凤毛麟角。绝大多数的代码和产品,在诞生的那一刻起就是冗余的,它们从未产生过真正的价值,有些草草上线后又默默下线,还有一些,甚至连发布的机会都没有就被“dispatch”了。
以前,行业的高速增长掩盖了这种优质资源的低质消耗。但现在,AI 的入场将这种冗余推向了极致。AI 在编程、翻译等“文本到文本”转换领域的进化速度是指数级的。
当 AI 能够以极低的成本、极高的效率提供近乎无限的“脑力供给”时,人类原本稀缺的脑力劳动瞬间面临贬值。
大家不得不直面一个残酷的现实:对于那些仅仅掌握了“技能”而没有掌握“价值”的人来说,无论你的学历多高,你所占据的生态位都正在变得岌岌可危。
02
归因:危机背后的错位与异化
如果说 AI 的技术突破是外因,那么教育体系和职场文化的惯性,则是导致这场焦虑的内因。高学历者似乎正在成为 AI 的竞争对手,而不是驾驭者。
教育错位:学霸们正在 AI 的主场作战
回看优等生的成长路径,他们的画像是高度清晰且一致的:极致的自律、效率和执行力,强大的记忆力、精准的模式匹配能力,以及面对海量试题迅速得出答案的本领。
这套体系筛选出的 985 学霸,本质上是工业时代最完美的“高级组件”。他们精密、稳定、耐用。
然而,一个残酷的悖论摆在面前:这些曾经让学霸们在千军万马中胜出的核心能力,恰恰是 AI 最擅长、成本最低的领域。
AI 拥有近乎无限的记忆,它的模式匹配能力远超人类,它不知疲倦,效率惊人。当学生们还在试图用“刷题”来训练大脑的反应速度时,其实是在以己之短,攻彼之长。现有的教育体系正在培养一批在 AI 主场作战的“竞争对手”,而这场比赛的结果,在起跑线上就已经注定。
更深层的危机在于,学校正在成为一个脱离现实的“楚门的世界”。
在学校这个模拟训练场里,所有的题目无论多难,都有一个预设的、唯一的标准答案。学生们习惯了这种确定性,他们像训练大模型“刷榜”一样,通过大量重复的练习来拟合考试的评估指标。他们知道,只要掌握了套路,就能得分。
然而,真实的世界从来没有标准答案。
在现实的商业环境或复杂的社会问题中,很多问题在抛出时甚至连定义都不清晰。要解决一个问题,第一步往往不是“解题”,而是在各方参与者之间进行博弈、沟通、妥协,最终定义出要解决的“问题”到底是什么,以及要达成的“目标”是什么。
这个至关重要的过程——定义问题、博弈平衡、寻找非标准解——在目前的学校教育中几乎是空白。
一直名列前茅的学霸们,习惯了把所有事情都当作考题,他们拿着锤子找钉子,自我陶醉于一击命中“标准答案”的快感。一旦进入没有标准答案的真实荒原,他们往往茫然无措,甚至因为找不到那个确定的“解”而陷入深深的自我怀疑和抑郁。

更为致命的是,这种缺失不仅是技能层面的,更是认知层面的。学霸们不仅没有学习过如何沟通与博弈,更关键的是,他们根本不知道需要做这些事情。他们不知道人类社会归根到底是“人”的事情,反而自以为是真理的代言人。
这一点恰恰长久以来环境暗示的结果——这种暗示横跨了学校和职场,让他们误以为只要逻辑正确、技术过硬,就能解决一切问题,从而彻底忽视了“人”这一核心变量。
职场异化:技术文化的“自我非人化”如果说教育完成了第一轮的“工具化”塑造,那么某些行业的职场文化,则在进行第二轮的“自我异化”。
在程序员和技术圈子中,这种倾向尤为明显。笔者在小红书上看到过一位程序员的真实分享(下图):

——这种心态在技术圈里甚至被视为一种“高效”的美德。
明明身处职场,每天都在解决真实问题,也拥有大量与人交互的机会,许多技术人员却选择主动剔除自己身上“人”的属性。
他们不仅自我异化,反过来也用这种“非人”的标准去要求别人:拒绝情感交流,拒绝那些看似低效的寒暄和共情,只追求像机器一样的精准高效。
这种做法直接导致了外界对技术人员产生“无法沟通”、“情商低”的刻板印象。圈内人对此不仅不以为意,反而洋洋自得,将其视为一种“极客精神”或“纯粹”。然而,实际上这种典型的“去人化”过程,恰恰是技术人员最大的弊病。
危机的根源正是在于此:在 AI 时代,当代码编写、逻辑构建这些原本引以为傲的生产力要素已经可以由 AI 承担时,这群主动放弃了“人性”特质、彻底将自己工具化的人,价值究竟何在?

当你主动剥离了那些低效但温情的部分,试图让自己变得像机器一样思考和工作,那么当真正的机器——更高效、更廉价、更听话的 AI——到来时,被替代的焦虑便油然而生。既然你追求的是机器的标准,那么真正的机器来了,你又该何去何从?
03
破局:在 AI 时代重塑不可替代性
面对这场生态位的入侵,焦虑是本能,但行动才是出路。既然“工具人”的道路已经越走越窄,就需要换一个努力的方向。
认知升级:承认生态位的变迁
首先,学霸们需要进行一场残酷的认知升级:承认自己曾经引以为傲的生态位正在发生不可逆的变迁。
AI 已经开始直接冲击原属于人类智商前 1% 到前 0.01% 的区间。这正是传统意义上 985 理工学霸的腹地。
当然,如果你是那前百万分之一的天才,致力于最前沿的原创性科学探索,你大可不必焦虑,因为 AI 目前还无法触及那个领域。
但对于绝大多数优秀的专业人士来说,必须放弃幻想:不能再甘心只做一个“好用的工具”了。
在 AI 时代,纯粹的工具价值会被无限稀释。无论你的代码写得多么优雅,翻译做得多么信达雅,只要它是标准化的、可被定义的任务,AI 迟早能做得比你更快、更便宜。
价值重构:从“单点执行”到“商业闭环”
摆脱工具人命运的关键,在于从“单点执行”走向“商业闭环”。
过去,大家习惯于接受指令,专注于解决“怎么做”(How)的问题。老板给需求,员工写代码;客户给文档,译者做翻译。人们以执行的完美度来衡量自我价值。
但在 AI 时代,“怎么做”是 AI 最擅长的。从业者必须把视线向上游和下游延伸,去思考“做什么”(What)和“为什么做”(Why)。
技术人员不能再只闷头写代码,而要抬头看路。你需要理解业务,理解你的代码究竟为谁解决了什么问题,创造了什么商业价值。你需要从一个被动的执行者,变成一个主动的对目标进行判断,对资源进行获取和整合的人。这是 AI 无法替代的。
大家要学会让自己嵌入到商业闭环中去,而不是只做闭环中的一个螺丝钉。
回归本质:重拾“废话”的价值
最后,也是最重要的一点:回归“人”的本质。
之前,技术人员为了追求高效,主动切断了与他人的情感链接,把沟通变成了冷冰冰的信息交换。现在,需要把那些被丢弃的东西捡回来。
那些看似低效的“废话”、那些职场中被认为不专业的“情绪”、那些人与人之间微妙的共情和理解,恰恰是 AI 难以模仿的人类护城河。
当硬核技术可以被算力和算法无限复制的时候,“被看见”、“被理解”和“被关怀”的感觉,成了最稀缺的奢侈品。
大家需要重新成为一个“完整的人”。在工具属性之外,去发展感知力、决策力和跨界整合能力。

未来的世界,属于那些能够驾驭 AI 的人,而不是试图与 AI 比拼算力的人。人类要做的,不是更快的 CPU/GPU,而是那个掌握方向盘的驾驶员。

欢迎关注微软 智汇AI 官方账号
一手资讯抢先了解

喜欢就点击一下 在看 吧~
1万+

被折叠的 条评论
为什么被折叠?



