卡尔曼滤波器(19) -- 多维卡尔曼滤波器(总结)

This blog is translated from https://www.kalmanfilter.net/default.aspx.
It’s an excellent tutorial about Kalman Filter written by Alex Becker.


目录
卡尔曼滤波器(1) – 背景知识
卡尔曼滤波器(2) – α−β−γ滤波器(例1)
卡尔曼滤波器(3) – α−β−γ滤波器(例2)
卡尔曼滤波器(4) – α−β−γ滤波器(例3&例4&总结)
卡尔曼滤波器(5) – 一维卡尔曼滤波器(介绍)
卡尔曼滤波器(6) – 一维卡尔曼滤波器(例5&完整模型)
卡尔曼滤波器(7) – 一维卡尔曼滤波器(例6)
卡尔曼滤波器(8) – 一维卡尔曼滤波器(例7&例8)
卡尔曼滤波器(9) – 多维卡尔曼滤波器(前言&预备)
卡尔曼滤波器(10) – 多维卡尔曼滤波器(状态外推方程)
卡尔曼滤波器(11) – 多维卡尔曼滤波器(线性动态系统模型)
卡尔曼滤波器(12) – 多维卡尔曼滤波器(协方差外推方程)
卡尔曼滤波器(13) – 多维卡尔曼滤波器(测量方程)
卡尔曼滤波器(14) – 多维卡尔曼滤波器(简短总结)
卡尔曼滤波器(15) – 多维卡尔曼滤波器(状态更新方程)
卡尔曼滤波器(16) – 多维卡尔曼滤波器(协方差更新方程)
卡尔曼滤波器(17) – 多维卡尔曼滤波器(卡尔曼增益)
卡尔曼滤波器(18) – 多维卡尔曼滤波器(简化的协方差更新方程)
卡尔曼滤波器(19) – 多维卡尔曼滤波器(总结)
卡尔曼滤波器(20) – 多维卡尔曼滤波器(例9)


我们得出了所有 5 个矩阵形式的卡尔曼滤波器方程,让我们将所有内容放到一个页面中。卡尔曼滤波器以“预测-循环”方式运行。 如下图所示。
在这里插入图片描述
初始化后,卡尔曼滤波器将在下一个时间点预测系统状态。同样,卡尔曼滤波器提供了预测的不确定性。

一旦接收到测量值,卡尔曼滤波器就会更新(或修正预测)当前状态的不确定性。同样,卡尔曼滤波器预测下一个状态,等等。

下面是卡尔曼滤波器操作的完整示意图:
在这里插入图片描述

下面的表格是卡尔曼滤波器方程:


预测:

方程方程名又名
x ^ n + 1 , n = F x ^ n , n + G u n \pmb{\hat{x}_{n+1,n}} = \pmb{F}\pmb{\hat{x}_{n,n}} + \pmb{Gu_n} x^n+1,nx^n+1,nx^n+1,n=FFFx^n,nx^n,nx^n,n+GunGunGun状态外推
(State Extrapolation)
预测者方程 (Predictor Equation)
过渡方程 (Transition Equation)
预测方程 (Prediction Equation)
动态模型 (Dynamic Model)
动态空间模型 (State Space Model)
P n + 1 , n = F P n , n F T + Q \pmb{P_{n+1,n}} = \pmb{F} \pmb{P_{n,n}} \pmb{F}^T + \pmb{Q} Pn+1,nPn+1,nPn+1,n=FFFPn,nPn,nPn,nFFFT+QQQ协方差外推
(Covariance Extrapolation)
预测者协方差方程 (Predictor Covariance Equation)

更新(矫正):

方程方程名又名
x ^ n , n = x ^ n , n − 1 + K n ( z n − H x ^ n , n − 1 ) \pmb{\hat{x}_{n,n}} = \pmb{\hat{x}_{n,n-1}} +\pmb{K_n}(\pmb{z_n} - \pmb{H} \pmb{\hat{x}_{n,n-1}}) x^n,nx^n,nx^n,n=x^n,n1x^n,n1x^n,n1+KnKnKn(znznznHHHx^n,n1x^n,n1x^n,n1)状态更新
(State Update)
滤波方程 (Filtering Equation)
P n , n = ( I − K n H ) P n , n − 1 ( I − K n H ) T + K n R n K n T \pmb{P_{n,n}} = (\pmb{I}-\pmb{K_nH}) \pmb{P_{n,n-1}} (\pmb{I}-\pmb{K_nH})^T + \pmb{K_n} \pmb{R_n} \pmb{K_n}^T Pn,nPn,nPn,n=(IIIKnHKnHKnH)Pn,n1Pn,n1Pn,n1(IIIKnHKnHKnH)T+KnKnKnRnRnRnKnKnKnT协方差更新
(Covariance Update)
矫正方程 (Corrector Equation)
K n = P n , n − 1 H T ( H P n , n − 1 H T + R n ) − 1 \pmb{K_n} = \pmb{P_{n,n-1}} \pmb{H}^T (\pmb{HP_{n,n-1}H}^T + \pmb{R_n})^{-1} KnKnKn=Pn,n1Pn,n1Pn,n1HHHT(HPn,n1HHPn,n1HHPn,n1HT+RnRnRn)1卡尔曼增益
(Kalman Gain)
权重方程 (Weight Equation)

辅助的:

方程方程名又名
z n = H x n \pmb{z_n} = \pmb{H}\pmb{x_n} znznzn=HHHxnxnxn测量方程
(Measurement Equation)
R n = E ( v n v n T ) \pmb{R_n} = E(\pmb{v_n v_n}^T) RnRnRn=E(vnvnvnvnvnvnT)测量不确定性
(Measurement Uncertainty)
测量误差 (Measurement Error)
Q n = E ( w n w n T ) \pmb{Q_n} = E(\pmb{w_n w_n}^T) QnQnQn=E(wnwnwnwnwnwnT)过程噪声不确定性
(Process Noise Uncertainty)
过程噪声误差 (Process Noise Error)
P n , n = E ( e n e n T ) = E ( ( x n − x ^ n , n ) ( x n − x ^ n , n ) T ) \pmb{P_{n,n}} = E(\pmb{e_n e_n}^T)=E\left( (\pmb{x_n} - \pmb{\hat{x}_{n,n}}) (\pmb{x_n} - \pmb{\hat{x}_{n,n}})^T \right) Pn,nPn,nPn,n=E(enenenenenenT)=E((xnxnxnx^n,nx^n,nx^n,n)(xnxnxnx^n,nx^n,nx^n,n)T)估计不确定性
(Estimation Uncertainty)
估计不确定性误差 (Estimation Error)


下面是符号的总结:

TermNameAlternative termDimensions
x \pmb{x} xxx状态向量(State Vector) n x × 1 n_x \times 1 nx×1
z \pmb{z} zzz输出向量(Output Vector) y \pmb{y} yyy n z × 1 n_z \times 1 nz×1
F \pmb{F} FFF状态过渡矩阵(State Transition Matrix) Φ , A \pmb{\Phi,A} Φ,AΦ,AΦ,A n x × n x n_x \times n_x nx×nx
u \pmb{u} uuu输入变量(Input Variable) y \pmb{y} yyy n u × 1 n_u \times 1 nu×1
G \pmb{G} GGG控制矩阵(Control Matrix) B \pmb{B} BBB n x × n u n_x \times n_u nx×nu
P \pmb{P} PPP估计不确定性(Estimate Uncertainty) ∑ \pmb{\sum} n x × n x n_x \times n_x nx×nx
Q \pmb{Q} QQQ过程噪声不确定性(Estimate Uncertainty) n x × n x n_x \times n_x nx×nx
R \pmb{R} RRR测量不确定性(Measurement Uncertainty) n z × n z n_z \times n_z nz×nz
w \pmb{w} www过程噪声向量(Process Noise Vector) y \pmb{y} yyy n x × 1 n_x \times 1 nx×1
v \pmb{v} vvv测量噪声向量(Measurement Noise Vector) n z × 1 n_z \times 1 nz×1
H \pmb{H} HHH观察矩阵(Observation Matrix) C \pmb{C} CCC n z × n x n_z \times n_x nz×nx
K \pmb{K} KKK卡尔曼增益(Kalman Gain) n x × n z n_x \times n_z nx×nz
n \pmb{n} nnn离散时间序号(Discrete Time Index)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值