目标检测中精确率,召回率,准确率的意思

先看几个缩写:

下面两行都是被你预测为正类的数据:
TP(True Positive):正确正类。(实际样本是正样本,你正确地判断成了正样本)
FP(False Positive): 错误正类。(实际样本是负样本,你错误地把它当成了正样本)


下面两行都是被你预测成了负类的数据:
TN(True Negative):正确负类,把负样本预测为负。(你预测对了)
FN(False Negative):错误负类,把正样本预测为负。(你预测错了)


所以 Positive / Negative 是你预测的结果,你把那些样本预测成了 正类 / 负类
True / Flase 表示你的结果正确与否。不管你预测成正类或负类,True就是你预测对了,Flase就是你预测错了。

在这里插入图片描述

图1

结合上面的解释和图示就很好理解了,在图中:
左边全是正类(绿色圈圈),个数是42个。
右边全是负类(红色圈圈),个数也是42个。

图中共有4个区域:

  • 在正类中:
  1. 预测对了:被预测为正类的(TP,True Positive)的个数是32个。
  2. 预测错了:被预测为负类的(FN,False Negative)的个数是10个。
  • 在负类中:
  1. 预测错了:被预测为正类的(FP,Flase Positive)的个数是14个。
  2. 预测对了:被预测为负类的(TN,True Negative)的个数是28个。

下面结合图示进行分析:

精确率(Precision)

P = T P T P + F P P = {\frac {TP} {TP+FP}} P=TP+FPTP

  所以精确率就是,在所有被你预测为正类的数据中,预测对的(真正的正类)占多少。
  按照图1的例子,这里精确率就是:
P = T P T P + F P = 32 32 + 14 = 32 46 = 69.565 % P = {\frac {TP} {TP+FP}}={\frac {32} {32+14}}={\frac {32} {46}}=69.565\% P=TP+FPTP=32+1432=4632=69.565%

  很遗憾,精确率不是很高,看着分母你会想,要是 FP(Flase Positive) 再少一点就好了。然而,就算 Flase Positive0 也不够,虽然此时 P = 100 % P=100\% P=100% ,但是在正类里面你还没有全部预测对,还漏了10个正类。

在这里插入图片描述

图2 精确率示意图


召回率(Recall)

R = T P T P + F N R = {\frac {TP} {TP+FN}} R=TP+FNTP

  所以召回率就是,在所有真正的正类中,你成功预测到的占了多少。
  按照图1的示例,这里召回率是:

R = T P T P + F N = 32 32 + 10 = 32 42 = 76.19 % R = {\frac {TP} {TP+FN}}={\frac {32} {32+10}}={\frac {32} {42}}=76.19\% R=TP+FNTP=32+1032=4232=76.19%

  怎样提高召回率?请看看公式或者看图。

在这里插入图片描述

图3 召回率示意图


准确率(Accuracy)

a c c = T P + T N T P + F P + T N + F N acc = {\frac {TP+TN} {TP+FP+TN+FN}} acc=TP+FP+TN+FNTP+TN
  所以准确率就是,在所有样本中,你预测对的占多少。
  哪些是预测对的?正类里面你预测到了几个正类 + 负类里面你预测到了几个负类。
  按照图1的示例,这里准确率是:

a c c = T P + T N T P + F P + T N + F N = 32 + 28 32 + 10 + 28 + 14 = 32 + 28 84 = 71.43 % acc = {\frac {TP+TN} {TP+FP+TN+FN}}={\frac {32+28} {32+10+28+14}}={\frac {32+28} {84}}=71.43\% acc=TP+FP+TN+FNTP+TN=32+10+28+1432+28=8432+28=71.43%

在这里插入图片描述


目标检测中的准确率:
由于目标检测中没有 TN(因为预测框太多,低于得分的都直接去掉了,没有加入评价指标中),所以这里令 TN 为 0。

所以
a c c = T P + T N T P + F P + T N + F N = T P T P + F P + F N \begin{aligned} acc &= {\frac {TP+TN} {TP+FP+TN+FN}} \\[1em] & = \dfrac{TP}{TP+FP+FN} \end{aligned} acc=TP+FP+TN+FNTP+TN=TP+FP+FNTP

T P + F N TP + FN TP+FN 就是所有的真实目标,设为单位 1 1 1;那么 T P = 1 ∗ R TP=1 * R TP=1R,就是召回。

F P = T P P − T P = R P − R FP = \dfrac{TP}{P} - TP = \dfrac{R}{P} - R FP=PTPTP=PRR

所以
a c c = R 1 + F P = R 1 + R P − R = R P P + R P − P R P = P R P + R − P R \begin{aligned} acc &= \frac {R} {1+ FP} \\[2em] & = \dfrac{R}{1+\dfrac{R}{P} - R} \\[2em] & = \dfrac{R}{\dfrac{P}{P} + \dfrac{R}{P} - \dfrac{PR}{P}} \\[2em] & = \dfrac{PR}{ P + R - PR} \end{aligned} acc=1+FPR=1+PRRR=PP+PRPPRR=P+RPRPR

<think>好的,我现在需要回答用户关于目标检测准确率召回率的问题。首先,我得回忆一下这两个指标的基本定义和计算方法,同时结合用户提供的引用内容来确保准确性。 准确率(Precision)和召回率(Recall)是分类任务中常用的评价指标,但在目标检测中它们的计算可能有所不同。根据引用[4],准确率指的是分类正确的正样本占分类器判定为正样本的比例,即查准。而召回率则是实际正类样本中被正确识别的比例,即查全,如引用[3]所述。 接下来,我需要考虑目标检测中的具体应用。例如,在目标检测中,每个预测框和真实框的交并比(IoU)是关键因素。引用[2]提到,IoU是预测框与真实框的交集与并集的比值,通常用来判断预测是否正确。比如,当IoU超过某个阈值(如0.5)时,才认为预测正确。 用户提供的引用中有关于准确率召回率的公式。准确率公式是TP/(TP+FP),召回率是TP/(TP+FN)。这里的TP是正确检测的正样本,FP是错误的正样本检测(误报),FN是漏检的真实样本。 需要详细说明如何计算TP、FP、FN。例如,在目标检测中,每个真实框可能会有多个预测框,这时候如何处理?可能需要使用非极大值抑制(NMS)来消除冗余的预测框,然后通过IoU判断是否为TP或FP。如果某个真实框没有被任何预测框匹配到,则计入FN。 还要注意,不同的IoU阈值会影响结果。例如,较高的IoU阈值会导致更严格的判定,可能降低TP的数量,从而影响准确率召回率。因此,在实际应用中需要明确阈值的选择。 另外,引用[1]提到准确率(Accuracy)不常用,因为目标检测更关注正样本的识别情况。这可能是因为在目标检测中,负样本(背景)数量远多于正样本,导致准确率指标不够敏感,所以更侧重精确召回率。 最后,总结准确率召回率目标检测中的计算步骤,并给出具体例子,比如使用IoU阈值0.5的情况。同时,可以提到如何通过调整置信度阈值来平衡这两个指标,以及F1分数作为两者的调和平均。 用户可能还会关心这些指标的实际应用,比如模型优化时如何根据这些指标调整参数,或者如何解释模型的性能。但根据问题,主要需要明确回答定义和计算方法,确保覆盖引用中的关键点,并正确引用来源。</think>### 目标检测准确率召回率的定义与计算方式 #### 1. **准确率(Precision)** **定义**:准确率表示分类器判定为正样本的检测结果中,真正属于正样本的比例,也称为**查准**。 **计算公式**: $$ \text{Precision} = \frac{TP}{TP + FP} $$ - **$TP$(True Positive)**:正确检测到的正样本(预测框与真实框的IoU ≥ 阈值)。 - **$FP$(False Positive)**:误检为正样本的负样本(预测框与真实框的IoU < 阈值,或未匹配到真实框的预测框)[^4]。 #### 2. **召回率(Recall)** **定义**:召回率表示所有实际存在的正样本中,被正确检测到的比例,也称为**查全**。 **计算公式**: $$ \text{Recall} = \frac{TP}{TP + FN} $$ - **$FN$(False Negative)**:未被检测到的真实正样本(真实框未匹配到任何预测框)[^3]。 --- #### 3. **目标检测中的具体实现** 1. **IoU(交并比)**: 预测框与真实框的交集面积除以并集面积: $$ \text{IoU} = \frac{\text{交集面积}}{\text{并集面积}} $$ 通常设定阈值(如0.5)判断是否为有效检测[^2]。 2. **匹配规则**: - 每个真实框仅与一个预测框匹配(通常选择IoU最大的预测框)。 - 若预测框未匹配到任何真实框,则视为$FP$。 - 未被匹配的真实框视为$FN$。 --- #### 4. **示例说明** 假设检测结果如下: - **真实框**:10个 - **预测框**:12个(其中8个IoU ≥ 0.5,4个IoU < 0.5) - **未匹配的真实框**:2个 计算过程: - $TP = 8$ - $FP = 4$ - $FN = 2$ - **准确率**:$8 / (8+4) = 66.7\%$ - **召回率**:$8 / (8+2) = 80\%$ --- #### 5. **指标间的权衡** - **提高准确率**:需减少$FP$(如提高检测阈值),但可能导致$FN$增加,召回率下降。 - **提高召回率**:需减少$FN$(如降低检测阈值),但可能引入更多$FP$,准确率下降。 - **F1-score**:综合两者的调和平均值: $$ F1 = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}} $$ ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值