CHAIN-OF-KNOWLEDGE: GROUNDING LARGE LANGUAGE MODELS VIA DYNAMIC KNOWLEDGE ADAPTING OVER HETEROGENEOU

论文标题:CHAIN-OF-KNOWLEDGE: GROUNDING LARGE LANGUAGE MODELS VIA DYNAMIC KNOWLEDGE ADAPTING OVER HETEROGENEOUS SOURCES

文章《知识链:通过异构源动态知识适配增强大型语言模型》介绍了一个旨在提高大型语言模型(LLMs)事实准确性的新框架,通过动态整合外部多样化的知识来源来实现。以下是关键组成部分和思想的简化概述:

知识链(CoK)框架

  • 目的:解决LLMs在生成信息时可能出现的“幻觉”问题,即模型生成看似合理但实际上不正确的信息。
  • 方法:CoK通过将模型的响应基于实际知识的检索来增强,改善了信息的准确性。

CoK的组成部分

  1. 推理准备

    • 模型基于输入问题生成初始理由和答案。
    • 确定相关的知识领域,以确保准确检索信息。
  2. 动态知识适配

    • 使用自适应查询生成器(AQG)为各种知识源格式(如Wikidata的SPARQL,数据库的SQL)创建查询。
    • 使用检索到的信息更正初始理由,确保错误不会在推理过程中传播。
  3. 答案整合

    • 在知识适配阶段通过精炼理由后,CoK整合这些理由产生最终的、准确的答案。

关键创新

  • 自适应查询生成器(AQG):能够为不同类型的数据库和知识库生成查询,增强模型与各种信息源交互的能力。
  • 理由的逐步修正:通过新信息调整早期理由,减少错误传播,有助于改进后续答案的精确度。

优势

  • 在知识密集型任务中提高答案的准确性和可靠性。
  • 通过确保所有生成内容针对实际数据进行验证,减少了幻觉现象。

该框架代表了将LLMs与实时、动态数据源集成的重要步骤,以增强它们在生成响应时的可靠性和事实准确性。


1.推理准备

"推理准备"阶段是“知识链”(CoK)框架的第一阶段,其主要目的是为后续的知识动态适配和答案整合阶段做好准备。这一阶段涉及生成初步的推理理由和答案,并识别出相关的知识领域。这里是如何完成推理准备的详细解释:

推理生成

  • 生成理由:基于输入的问题,模型首先生成一系列初步的推理理由。这些理由是问题解决过程中的逻辑步骤,它们构成了回答问题的推理链。
  • 生成答案:与理由生成同时,模型也会生成一个或多个初步答案。这些答案是基于模型当前的知识和推理链的直接输出。

知识领域选择

  • 识别领域:在生成初步理由和答案后,CoK框架需要确定这些信息涉及哪些知识领域。这一步是关键的,因为不同的问题可能需要从不同的知识领域中检索信息。
  • 领域分类:领域的选择基于问题的性质和内容。例如,医学问题可能需要访问医学数据库,历史问题可能依赖于历史记录或事实数据库。

示例

考虑一个问题:“哪位演员导演了电影《X》?”在推理准备阶段,模型可能首先生成这样的理由:“根据数据库,电影《X》的导演是某某。”接着,模型会确定这个问题和答案涉及到的知识领域是电影和娱乐。

方法和技术

  • 多样化的知识源:CoK不仅利用结构化数据(如数据库和知识图谱),还可能使用非结构化数据(如文本文档和文章)。
  • 自适应查询生成器(AQG):这是一个关键组件,用于生成针对各种类型知识源的查询。这个生成器能够根据问题和识别的知识领域自适应地生成适当的查询语句。

结果的影响

  • 效率和准确性:通过有效地选择相关知识领域,CoK能够更精确地定位到解决问题所需的信息,从而提高了回答问题的效率和准确性。
  • 错误最小化:正确的知识领域选择有助于减少由于访问不相关信息源而可能引入的错误。

通过这样的推理准备,CoK框架为解决复杂问题提供了坚实的基础,确保了信息的相关性和准确性,为后续的动态知识适配和答案整合阶段奠定了基础。


2.动态知识适配

"动态知识适配"阶段是“知识链”(CoK)框架的第二阶段,旨在使用从不同知识源检索到的信息来纠正和精化初步生成的推理理由。这一阶段的关键在于利用检索到的知识来逐步修正和验证推理链,以提高回答的事实准确性和可靠性。以下是动态知识适配阶段的具体步骤和实施方式的详细解释:

步骤 1: 知识检索

  • 查询生成:首先,基于推理准备阶段生成的初步理由和识别的相关知识领域,自适应查询生成器(AQG)会生成用于检索外部知识的查询。这些查询针对具体的知识源和查询语言进行优化,如使用SPARQL语言查询Wikidata,或使用SQL查询结构化数据库。
  • 执行查询:生成的查询随后被执行以从相应的知识源获取数据。这些数据可能是结构化的(例如,来自数据库的表格数据),或是非结构化的(例如,来自互联网或专业文档的文本信息)。

步骤 2: 知识应用与理由修正

  • 理由修正:获取到的知识用于检验和修正初步理由。例如,如果初步理由基于过时或不准确的信息,检索到的当前和准确的数据将被用来更新这些理由。
  • 递进式修正:这一阶段的关键特性是其递进性,即先前的理由修正可以影响随后理由的生成和修正。这帮助系统在整个推理过程中最小化错误传播。

步骤 3: 迭代循环

  • 迭代过程:动态知识适配是一个迭代过程,其中每一个修正的理由都可能触发新的查询和进一步的理由修正。这一过程一直持续到所有的理由都被视为准确无误,为最终的答案提供了坚实的基础。

技术实现

  • 自适应查询生成器(AQG):AQG在这个阶段中扮演着核心角色,不仅需要根据不同的知识源生成适应性强的查询,还需确保查询的精确性和相关性。
  • 多源信息整合:动态知识适配阶段可能需要整合来自多个知识源的信息,这要求系统能够处理和融合来自不同源(如知识图谱、数据库和网络文档)的数据。

结果与优势

  • 提高准确性:通过直接与可靠的知识源交互,并根据实时检索到的信息修正推理过程,大大提高了生成答案的准确性和可信度。
  • 减少幻觉:系统通过持续修正基于不准确或过时信息的推理,显著减少了模型在生成响应时出现的幻觉现象。

这一阶段的设计使得CoK框架能够在处理复杂和知识密集型问题时,提供更加可靠和事实基础坚实的答案,从而有效地支持大型语言模型在高质量内容生成中的应用。



专业名词解释:
chain-of-knowledge (CoK):知识链
一个新的框架,通过动态地结合来自异构源的基础信息来增强大型语言模型(llm)

“异构源”(heterogeneous sources)指的是不同类型的数据源,它们在结构、格式或内容上可能有所不同。在大型语言模型(LLMs)和知识增强框架(如CHAIN-OF-KNOWLEDGE,CoK)的背景下,异构源通常指以下几种类型的数据源:

  1. 结构化数据源:这些数据源具有固定的格式和模式,例如数据库表(使用SQL查询)、知识图谱(使用SPARQL查询)等。它们的数据以预定义的方式组织,易于进行精确查询。

  2. 非结构化数据源:这些数据源没有固定的格式,例如文本文件、网页或普通文本数据。非结构化数据通常需要更复杂的处理方法来提取有用信息。

  3. 多模态数据源:包括图像、视频、音频等多种形式的数据,它们可以提供不同类型的信息,需要特定的处理方法来解析和利用。

  4. 领域特定数据源:针对特定主题或领域的数据源,例如医学文献、科学论文或法律文件,这些数据源包含高度专业化的知识。

  5. 开放数据源:如Wikipedia、Wikidata等,它们提供广泛的公共知识,可以被用来支持和验证语言模型生成的信息。

  6. 专业数据库:例如医学数据库、科学数据库等,这些数据库包含经过专家审核和验证的权威信息。

在CoK框架中,异构源的使用允许模型从多种类型的数据源中检索和整合知识,以提高对复杂问题的理解和回答的准确性。通过结合这些不同来源的知识,CoK能够生成更加丰富、准确和可靠的推理解释和答案。

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值