编码器和解码器的区别
-
主要功能:
- 编码器:编码器的主要功能是处理输入数据,并将其转换成一种内部表示(context vectors),这种表示捕捉了输入数据的重要特征。编码器特别适合于自然语言理解(NLU)任务。
- 解码器:解码器的主要功能是基于某种内部表示或前一个状态的输出来生成新的输出。解码器特别适合于自然语言生成(NLG)任务。
-
处理方式:
- 编码器通常一次性处理整个输入序列,捕捉序列中的信息,并生成一个固定长度的内部表示。
- 解码器则通常一步步生成输出,每一步生成一个元素(如一个单词),并可能依赖于之前的输出。
-
自注意力机制的使用:
- 在Transformer架构中,编码器的自注意力层允许每个位置的输入与序列中的其他位置直接相互作用,以捕捉全局依赖关系。
- 解码器的自注意力层被设计为掩蔽的(masked),以防止未来位置的信息在生成当前位置的输出时被使用,确保生成过程的自回归特性。
总的来说,编码器和解码器在结构上可能相似(尤其是在基于Transformer的模型中),但它们在功能上有着本质的区别。编码器擅长理解和编码输入信息,而解码器擅长基于一定的输入(可以是编码器的输出)来逐步构建和生成输出序列。这两种组件可以单独使用,也可以结合使用,以适应不同类型的任务需求。
为什么只有编码器也能构建大模型?
1. 强大的上下文理解能力
编码器通过自注意力机制能够处理每个输入元素(如单词)并考虑到整个输入序列的上下文。这使得编码器非常擅长捕捉语言中的长距离依赖和复杂的语