2025 美赛B题 系统动力学+多目标优化| 完整建模+可视化+代码全文放出

2025 MCM 问题 B:管理可持续旅游业

以下是我们对该题目的赛题分析,由于完整内容过长,因此在此处放出部分内容

赛题分析

以下内容包括三个主要部分:

(1) 题目的中文翻译

(2) 对题目的整体分析与思路综述

(3) 对题目要求的逐项详细分析与求解思路。

本文的撰写将综合运用多元的数学模型、算法以及机器学习/深度学习的方法,并在必要时给出题外假设与可行的创新性思路,以期为参赛者提供较为系统全面的赛题分析与参考。

一、赛题中文翻译

以下是对 MCM 2025 B 题的全文翻译(含原文脚注中的网址引用):

题目:管理可持续旅游业(Managing Sustainable Tourism)

美国阿拉斯加州的朱诺(Juneau)拥有大约3万名居民,2023年却接待了创纪录的160万邮轮乘客,在最繁忙的日子里,多达七艘大型邮轮同时停靠,约有2万名游客[1]。虽然这些游客为该市带来了可观收入——约3.75亿美元[2],但也带来了与过度拥挤相关的问题,促使市政当局试图限制游客数量。具有讽刺意味的是,朱诺最主要的景点之一——门登霍尔冰川(Mendenhall Glacier)——却在退缩,而这在一定程度上是由过度旅游导致的变暖温度所引起。自2007年以来,该冰川已经后退了相当于8个足球场的长度,令当地许多人担忧:一旦冰川消失,游客和相应的收入也将消失[3]。值得庆幸的是,朱诺还有其它景点——例如观鲸(whale watching)和雨林(rainforests)——只要能制定并实施可持续旅游计划,朱诺仍可以维持其作为旅游目的地的地位。

最近的报告[4]强调了旅游业的隐性成本以及在世界范围内的许多旅游目的地中,为保护自然和文化资源、构建可持续的旅游业而需要管理这些成本的重要性。这些隐性成本包括对当地基础设施(例如饮用水供应、废物管理)的压力,以及在位于环境敏感地区的旅游目的地所产生的整体碳足迹的增加。当地人口也面临着住房供应与成本、过度拥挤,以及游客行为失当等压力。为了缓解这些负担,各地采取了提高酒店税、征收游客费、限制每日游客数量、限制酒精销售和消费等多种措施。通过提高税收所获得的收入被用于保护工作、基础设施改善以及社区项目的开发。虽然一些依赖旅游业的当地人担心额外费用会吓跑游客,希望能吸引更多游客以扩大自身收入,但也有许多当地人对过度旅游不满,选择离开或抗议游客。

  • 需要完成的任务:
  • 为阿拉斯加州朱诺市构建一个可持续旅游业的模型。你可能需要考虑的因素包括:游客数量、整体收入,以及为稳定旅游业所采取的措施。需要明确说明哪些因素是优化目标,哪些因素是约束条件。并包括一个针对额外收入的支出方案,展示这些支出是如何在你的模型中形成正反馈,进一步促进可持续旅游的发展。需要提供敏感性分析并讨论最重要的因素。
  • 说明如何将你的模型适配到另一个同样受到过度旅游影响的旅游目的地。不同地点的选择如何影响最重要的干预措施?如何利用你的模型来推广游客较少的景点/目的地,以实现更好的平衡?
  • 向朱诺旅游委员会撰写一页的简短备忘录,概述你的预测结果、各种措施的效果,以及你针对如何优化结果所提出的建议。
  • 附加信息:
  • 无特定的最小页数限制。
  • 允许使用AI(如ChatGPT)辅助,但需遵守COMAP官方关于AI使用的政策,并单独在文档末提交AI使用说明。
  • 术语表:
  • 可持续旅游(Sustainable tourism):涉及旅游体验的方方面面,关注经济、社会和环境议题,以及改善游客体验、满足当地社区需求。可持续旅游应兼顾环境保护、社会公平和生活质量、文化多样性,以及能够提供就业与繁荣的活力经济。
  • 碳足迹(Carbon footprint):通过吨(CO2当量)来比较某项活动、产品、公司或国家排放的温室气体总量。
  • 基础设施(Infrastructure):一个社会或机构正常运行所需的基本物质和组织结构设施(如建筑、道路、电力等)。
  • 参考文献:
  • https://abc7.com/post/juneau-alaska-cruise-ship-limits-overtourism/15048713/
  • https://juneau.org/wp-content/uploads/2024/01/CBJ-Cruise-Impacts-2023-Report-1.22.24.pdf
  • https://alaskapublic.org/2023/08/07/crammed-with-tourists-juneau-wonders-what-will-happen-as-mendenhall-glacier-recedes/
  • https://www.thetravelfoundation.org.uk/invisible-burden/

二、整体分析与思路综述

本题聚焦于“可持续旅游(Sustainable Tourism)”这一主题。朱诺在过去几年接待了大量游客,带来可观经济收益的同时,也对当地环境、基础设施及居民生活质量造成了不良影响。因此,题目要求构建一个综合模型来平衡经济收益与各类可持续发展目标,包括环境保护、基础设施承载力与社会福利等。

1. 建模思路的关键要素

经济收入与游客数量

游客数量与旅游收入往往呈正相关,但数量过多会导致环境与社会成本增加。需要在游客规模与可支配的旅游收入之间寻找平衡点。

基础设施与资源承载力

包括饮用水供应、废物处理、交通拥堵、住宅成本以及基础设施所面临的维护及扩建压力。

环境影响

碳排放/碳足迹:海陆空交通的碳排放、当地能源消耗、游览活动带来的生态干扰。

冰川退缩:与全球变暖有密切关联。过度旅游导致的排放可能加剧地区气候变化。

社会影响

当地居民生活成本(住房价格、消费成本等)。

文化与社会的冲击(如游客造成的噪音、扰民、文化习俗冲突等)。

当地人对于旅游业的满意度/抵触情绪。

调控与干预措施

提高酒店税、增加游客费/门票费、每日游客总量限制、限制酒精销售等。

将调控所产生的额外税收用于基础设施改善、环境保护、社区福利(如住房补贴、社会保障等)。

利益相关者博弈

依赖旅游业的从业者倾向于欢迎更多游客。

其他受环境和社会压力影响的当地人则希望限制游客。

政府需要在税收、财政收入、地方经济、环境保护和社会满意度之间实现平衡。

2. 建模方向与模型框架

基于多目标的需要,该问题可考虑使用:

  • 多目标规划模型(经济收益最大化、环境代价最小化、社会满意度最大化)。
  • 动态模型(如系统动力学,分析游客数量、环境压力、财政收入和基础设施建设之间的动态反馈)。
  • 可持续指标体系+评价模型(如因子分析、熵权法、层次分析法等,将多个指标整合为可持续性评分)。
  • 机器学习/深度学习预测
  • 对游客数量、环境指标、经济收益的时序预测(如ARIMA, LSTM等),预估不同政策下的变化趋势。
  • 优化算法(遗传算法、粒子群算法等)搜索多目标Pareto最优解。

3. 敏感性分析与鲁棒性

在建立模型后,需要对关键参数(如游客需求弹性、碳排放因子、税率)进行敏感性分析,找出对系统影响最大的驱动因素,评估政策在不确定性下的有效性。

4. 推广与适应性

题目最后要求我们展示如何将该模型推广到其他遭受过度旅游冲击的地区,并撰写一份简短备忘录给旅游委员会做决策参考。这说明模型需具有通用性,能在不同地区(海岛、历史名城、自然保护区等)进行适当调整。

三、逐项问题的详细分析与求解思路

下面按照题目要求,针对每个子问题逐个做分析,并给出可能的建模方案以及相应的算法建议。

(1)建立朱诺可持续旅游业模型

1.1 模型目标与约束

  • 目标函数
  • 经济目标:最大化净收入 R
  • 旅游总收入(门票、住宿、餐饮、交通、购物等)减去旅游相关的运营成本与隐性社会成本(如果可量化)。
  • 环境目标:最小化环境负面影响 E
  • 可以用碳排放量、自然环境退化指数等表征。
  • 社会目标:最大化当地居民满意度 S
  • 指标可参考:住房可负担性、交通便利度、拥挤度、社会福利等。

常见的多目标形式例如: max[f1(R),−f2(E),f3(S)]. 或者可将多目标归一化后加权求和,具体权重可通过AHP(层次分析法)或熵权法等方法确定。

  • 主要约束
  • 游客数量与承载力N≤Nmax
  • 其中 Nmax 可基于基础设施、每日承载能力或环境容量设定。
  • 财政平衡约束
  • 新收税费的分配和支出:必须保证投向环保、基础设施、社会福利的资金之和不超过政府税收盈余。

  • 环境指标约束
  • 设定碳排放或废物处理“阈值”。例如: CO2Emission≤Threshold
  • 社会指标约束
  • 保证当地居民基本福利(如住房供应、最低满意度等),可以抽象成: S≥Smin 。

1.2 额外税收的使用方案与正反馈

  • 假设:征收的税收收入或酒店费收入等,按照比例分配到不同的支出项目: Tenv=αenv⋅T,Tinfra=αinfra⋅T,Tsocial=αsocial⋅T,
  • 其中 αenv+αinfra+αsocial=1 ,T为额外税收总额。
  • 正反馈机制
  • 当更多资金投入环境保护时,可以降低环境负面影响,进而提高旅游景点的长期可持续吸引力。
  • 当基础设施得到改善(如交通、废物管理、水电供应等),可提升游客体验,同时缓解当地居民的不满。
  • 当社区福利得到改善(如住房补贴、公共服务),可提升社会满意度,从而减少对游客的抗议或冲突。
  • 动态建模思路
  • 系统动力学(System Dynamics)
  • 令状态变量包括:游客量 N(t) 、环境指数 E(t) 、政府资金 F(t) 、社会满意度 S(t) 等。
  • 建立差分或微分方程,反映支出与环境、社会指标的关系;对游客量可基于市场需求、口碑与环境吸引力等建立反馈回路。
  • 离散事件或排队论:如针对交通拥堵或景点排队进行模拟,辅助决策。

1.3 敏感性分析

  • 关键影响因子
  • 税率:税/费的提高是否会过度打击游客需求?是否会导致收入整体下降?
  • 环境阈值:若环境约束更严格时,允许的游客最大值N_{\max}将下降,对收入的影响如何?
  • 居民满意度权重:社会目标在多目标中的权重变化,如何影响政策取向?
  • 游客需求弹性:价格提高时,游客量下降的幅度(需求弹性系数)。
  • 方法
  • 单因素敏感性分析:在保持其他参数不变的情况下,改变某一因素观察目标值变化。
  • 多因素敏感性分析:采用正交实验设计/拉丁超立方采样对多参数进行采样,评估模型的整体敏感性。

(2)模型的推广与在其他旅游地的应用

2.1 不同地点选择的重要因素

每个旅游目的地的资源禀赋、环境保护重点、社会结构和文化背景都不同,但一般都会涉及“经济-环境-社会”三大要素。区别在于各自的权重和主要矛盾。

  • 例如
  • 海岛型目的地:淡水资源紧缺,废物处理和海洋生态环境敏感;游客主要依赖飞机/轮船,碳排放较高。
  • 历史古城型目的地:文物、文化遗产保护是核心,基础设施改造受限。
  • 自然保护区:生物多样性、生态平衡是主要关注点,对游客活动范围和数量的限制更严格。

2.2 选择不同政策时的重要性差异

  • 位置与交通:若主要游客需要飞机抵达,碳排放的影响更大;若是陆地交通方便,环境影响重点可能转向拥堵与大气污染。
  • 经济与社会结构:居民是否高度依赖旅游?当地是否存在农业、渔业或其他替代产业?对旅游业的依存度越高,则限制游客的阻力越大。
  • 当地文化与法律:一些地方对酒精消费或噪音管制更严,也有地方更重视历史文化遗产保护,对游客数量/行为会有专门的法律约束。

2.3 利用模型来推广游客到其他景点/时段

  • 思路
  • 通过动态定价/宣传,将游客重新分散到非旺季/其他景点:
  1. 非旺季优惠:降低门票或住宿费用,引导游客错峰出行。
  2. 强化次级景点的宣传:在旅游宣传中突出一些“未饱和景点”,给出一定交通优惠或导游折扣,引导游客分散。
  3. 预约制度:让游客提前预订景点参观时段,控制峰值流量。
  • 模型结合: 在建模过程中对不同景点或不同季节的游客行为进行预测和优化,把总体客流合理分配,以减轻主要景点和高峰期的压力,同时保持总收益相对稳定并提升整体满意度。

2025 MCM B 题:Managing Sustainable Tourism

1. 问题重述(Problem Restatement)

位于阿拉斯加州朱诺(Juneau)的门登霍尔冰川和周边景点因大量邮轮游客涌入而带来了可观的经济收益。但与此同时,大量游客在最繁忙的时段会达2万名,引发了环境压力(冰川退缩、生态破坏、碳排放增加)和社会问题(住房成本上涨、基础设施超负荷、居民与游客冲突等)。 为实现旅游业的可持续发展,需要在下述主要目标之间取得平衡: 1. 经济收益最大化:在不破坏旅游持续吸引力的前提下,保持或提升旅游业的经济收益和地方政府收入。 2. 环境保护与生态平衡:减轻或稳定由于游客活动所带来的环境压力,如碳排放、水资源与废物管理负担、冰川退缩速度等。 3. 社会满意度与社区和谐:保证当地居民的生活质量、社会福利、满意度等。

此外,政府可以通过征收额外税费、限制游客数量、优化旅游资源配置等措施,为基础设施建设和环境保护提供新的资金来源,从而在可持续旅游的循环中形成正反馈。题目也要求我们: 建立一个能兼顾经济、环境和社会三方面的可持续旅游模型; 制定一个有针对性的支出或投资方案; 进行敏感性分析,评估哪些参数对系统最敏感; 展示如何将此模型推广到其他面临过度旅游压力的目的地; 最后撰写给旅游委员会的一页备忘录。

2. 详细假设(Assumptions)

在实际建模中,往往需要做出一系列合理的假设,以便将现实问题简化并转化为可操作的数学模型。以下列出若干核心假设示例(团队可根据自身数据和需求灵活调整):

时间维度 将一年划分为若干时段(季节或月),并假设每个时段的游客需求、环境负荷、住宿容量相对稳定,可用离散时间序列( t=1,2,…,T )进行模型刻画。 或者选取一个连续的长期区间(如5~10年),用年度数据或季度数据做中长期分析。

游客需求 假设在没有额外限制或收费的情况下,当地对邮轮游客/自由行游客的潜在需求量为 Dt 。该需求量可基于历史数据或预测模型(如ARIMA、LSTM)给出。 若政府实行差异定价增加税费,则实际游客数量 Nt 会随价格变动而改变(体现需求弹性)。

环境容量与碳排放 将朱诺及周边环境的关键资源或生态容量(如废物处理能力、淡水供应、极端拥堵阈值等)设为 Cenv ,并假设在游客总量 Nt 一定时,环境消耗或负荷为某一函数 fenv(Nt) 。 对碳排放量和冰川退缩速度,做出线性或近似线性假设:即游客量越多,相关碳排放也越高;或采用更复杂的函数关系。

社会满意度 当地居民满意度(或社会效益)可以用 St 表示,其取决于: 1) 过度拥挤度(游客数量对公共资源、交通的影响), 2) 基础设施建设与社区福利的投入, 3) 居民对经济收益的认可程度。 假设 St 是若干指标(住房成本、就业机会、生活成本、社会服务质量等)的综合。为简化,可以定义一个合成函数或指数。

财政收入与投入 总旅游收入 $R_t$ 来自游客在住宿、餐饮、门票、购物等各项支出的综合;还包括政府征收的酒店税游客费等附加收入。 政府可将一部分收入 αenv⋅Rextra 用于环境保护,一部分 αinfra⋅Rextra 用于基础设施建设,另一部分 αsocial⋅Rextra 用于社区福利,每一项支出都会影响未来时段的环境承载力或社会满意度。

政策干预 假设政府可以设定单一或多种干预手段:

pt : 游客费或税费的水平, Nmax,t : 当期对游客流量的最大限制, α 值:额外收入在不同用途之间的分配比例。 干预手段对游客数量与收益有不同的弹性影响。

模型简化 不考虑其他非旅游产业的复杂交互(或假设非旅游收入对本地影响相对可忽略)。 不考虑极端事件(如自然灾害、国际经济衰退)导致的需求剧烈波动。 所有经济数据均采用同一货币单位,必要时可进行通货膨胀调整。

3. 模型说明

3.1 变量与符号说明

以下定义在离散时间序列( t=1,2,…,T )条件下:

游客相关

Nt :在时段 t 实际接待的游客数量。

Dt :在时段 t 的潜在游客需求(无干预情形下预测值)。

pt :在时段 t 政府对游客征收的附加费或税率(或门票费、酒店税)。

收益与成本

Rt :旅游综合收入(含基础的旅游收入及政府税收),可表示为 Rt=(P0+pt)⋅Nt (当 P0 代表游客原本的人均花费时),或采用更复杂函数形式。

Cenv,t :环境代价或环境管理成本(如废物处理、生态修复等);它与 Nt 及相关保护投入相关。 Csocial,t :社会成本或社区矛盾代价(如拥挤、治安、住房压力等造成的损失或支出),与游客总量及基础设施改善程度等相关。

环境与社会

Et :环境状态或环境压力指标(数值越大表示破坏越严重),可基于碳排放、废物负荷、冰川退缩速率等指标综合。

St :社会满意度(数值越大表示满意度越高)。

Ienv,t :环境保护性投资;

Iinfra,t :基础设施建设投资;$I_{\text{social},t}$:社区福利投资。

附加收入及分配

当时段 t 的额外收入记为 Rextra,t=pt⋅Nt (假设 pt 完全是新的税费收入)。 Ienv,t=αenv⋅Rextra,t,Iinfra,t=αinfra⋅Rextra,t,Isocial,t=αsocial⋅Rextra,t,

其中 αenv+αinfra+αsocial=1 。

3.2 目标函数设计

可持续旅游往往是一个多目标优化问题。这里给出三种常见的目标形式:

3.2.1 多目标规划形式

  1. 经济目标: max ∑t=1T(RtCenv,tCsocial,t) 该部分把旅游收入减去直接环境成本与社会成本,视为净收益。
  2. 环境目标: min ∑t=1TEt 或者最小化环境压力的峰值 $\max(E_t)$。有些时候,也可将减少碳排放的量作为最大化目标。
  3. 社会目标: max ∑t=1TSt

我们常见的做法是将多目标转化为单目标: 加权和: max(w1∑t=1T(RtCenv,tCsocial,t)−w2∑t=1TEt+w3∑t=1TSt) 或采用Pareto前沿的方法,在求解过程中同时优化三个目标,得到一系列平衡解。

3.2.2 动态系统目标

如果想强调系统演化过程,使用系统动力学状态方程,则可将每个状态变量(如 $E_t, S_t$ 等)视为动态演化的结果,定义总目标如下: 长期综合目标: 其他可持续指标max (β∑t=1T(RtCenv,tCsocial,t))+(1β)×(其他可持续指标) 其中$\beta$在[0,1]之间权衡经济与可持续性。

3.3 约束条件

  1. 游客数量与需求弹性0≤Nt≤Dt(price=P0+pt),∀t 若政府限制$N_t$不超过某阈值(基于景区容量),则 Nt≤Nmax,t.
  2. 环境承载与环境状态演化 设环境状态$E_t$的变化可表示为: Et+1=Et+g(Nt)h(Ienv,t), 其中$g(\cdot)$表示游客对环境的破坏或资源消耗量函数,$h(\cdot)$表示环境投资带来的修复或减缓能力。
  3. 社会满意度演化St+1=St+u(Isocial,t)v(Nt), 其中$u(\cdot)$表示社区投资对社会满意度的提升,$v(\cdot)$表示过多游客带来的负面影响(拥挤度、住房压力等)。
  4. 政府资金平衡 如果额外征收的税费总额为 $R_{\text{extra},t}$,则分配必须满足: Ienv,t+Iinfra,t+Isocial,t=Rextra,t. 也可以细化:基础设施投资$I_{\text{infra},t}$ 影响下一期$N_{\max,t+1}$ 等,从而形成动态正反馈。
  5. 非负、界定等常规约束Nt,Ienv,t,Iinfra,t,Isocial,t≥0,pt≥0,etc.

3.4 解的思路与算法

由于本模型常为非线性、且涉及多目标、动态反馈,多数情况下难以求得解析解。可选择以下思路之一:

多目标线性/非线性规划: 若将函数线性化或近似为线性,使用单纯形法(LP/IP)或混合整数规划(MILP); 若是非线性,则采用启发式算法(遗传算法、粒子群算法、模拟退火等)进行全局搜索。

系统动力学模拟 + 优化: 用系统动力学(SD)框架模拟 Et,St 的动态变化; 对 pt,Nmax,t,α 等决策变量做离散选取或区间划分,通过元启发式算法或多目标优化方法搜索满足目标的策略组合。

机器学习辅助: 先用时间序列模型(ARIMA/LSTM)预测基础需求 Dt ; 用回归或分类模型估计社会满意度 St 和环境成本 Cenv,t 对游客量、投资的响应; 将预测模型嵌入到优化框架中进行策略寻优。

3.5 敏感性分析

在求得一个或一组优良解后,需要对关键参数(如需求弹性、税率、投资分配比例、环境承载阈值等)进行敏感性分析,常用方法包括:

  1. 单因素敏感性:固定其他参数仅改变一个参数,观察最优解或目标值的变化;
  2. 多因素敏感性:使用拉丁超立方抽样正交试验设计,对多参数组合同时变化,分析模型结果的稳定性与鲁棒性。

3.6 推广与应用

在其他景点的推广:更改环境容量函数$g(\cdot)$、社会满意度函数$v(\cdot)$、成本函数$C_{\text{env},t}, C_{\text{social},t}$等,就可适应海岛、历史古城或自然保护区等差异化场景; 分流策略:若有多个景点,可以将 $N_t$ 拆分为 $N_{1,t}, N_{2,t}, \dots$ 不同景点的流量,分别约束与优化,以达到整体平衡。

小结

以上所示的框架性模型与假设,展示了如何将经济收益、环境保护与社会满意度三大要素统一到一个可持续旅游的多目标数学模型当中。实际解题时,需要根据具体的数据与侧重点对各函数和参数进行校正或简化,然后选择合适的算法进行求解。通过这种模型化与分析,可以帮助政府和决策部门在设置游客费、控制游客数量、分配额外投资等问题上做出更具可持续性的策略。

提示: 在写正式竞赛论文时,建议附带对 具体数据的回归或拟合过程(例如估算碳排放系数、游客数量价格弹性等),并结合真实案例(如朱诺市的历史年度游客量、财务报表等)进行示范性计算与仿真。 将文中的方程式展开为更详细的(1)参数定义、(2)决策变量范围、(3)算法实现细节(如遗传算法编码、迭代停止准则等),并对 结果的可行性局限性做客观讨论。

以下内容针对“为阿拉斯加州朱诺市构建一个可持续旅游业模型”这一子问题给出逐步且尽可能详细的解题思路,包括:

  1. 模型思路和数学公式
  2. 模型的敏感性分析思路
  3. 一个示例性的 Python 代码可视化脚本(演示如何模拟、可视化并进行初步灵敏度探索)

由于可持续旅游是一个多维度问题,以下示例模型做了必要的简化假设,以便更清晰地展示思路。实际的竞赛论文中,参赛队伍可根据所掌握的数据和研究重点,对模型进行更贴合实际的扩展或修改。

一、问题 1:

1.1 模型概述

我们考虑可持续旅游涉及的三大核心要素:

  1. 经济收益(Economic Revenue)
  2. 环境影响(Environmental Impact)
  3. 社会满意度(Social Satisfaction)

并针对朱诺市的现状设置了若干决策变量与状态变量,期望通过多目标或综合优化方法,在最大化经济收益的同时,将环境与社会负面影响控制在可接受水平(或更优水平)。

1.2 变量与符号定义

在离散时间 t=1,2,…,T (可按年/季度/旅游季)进行分析,定义如下主要变量:

Nt : 本时段接待的游客数量(决策/结果变量,与需求和政策相关)。 pt : 政府在时段 t 对游客征收的额外税费(决策变量),如旅游税、游客费、酒店附加费等。 Rextra,t=pt⋅Nt : 征收的额外收入。 αenv,αinfra,αsocial : 额外收入在环境保护、基础设施、社区福利之间的分配比例(常量或待优化),其中 αenv+αinfra+αsocial=1. Ienv,t=αenv⋅Rextra,t , Iinfra,t=αinfra⋅Rextra,t , Isocial,t=αsocial⋅Rextra,t : 分别表示在时段 t 用于环境保护、基础设施和社会福利的投入。

Et : 环境压力或“环境状态”指标(数值越大表示破坏越严重)。

St : 当地居民的社会满意度指标(数值越大表示满意度越高)。

Rt : 本时段旅游总收入(包括基础消费和税费等),可分为: 基础人均支出Rt=Rbase,t+Rextra,t=(基础人均支出×Nt)+(pt×Nt).

1.3 需求与游客数量

假设在每个时段$t$,若不存在额外收费,潜在游客需求为 Dt0 ;一旦征收 pt ,实际游客数量 Nt 会因“价格效应”低于潜在值。常见的线性需求弹性模型可以写为:

Nt=Dt0ϵpt,

其中 ϵ 为需求弹性系数(可由历史数据或估计得出)。若需求弹性比较大,征收较高税费时,游客下降就更明显;反之亦然。也可使用更复杂的需求函数(如对数或指数形式)进行拟合。

注意:若 Dt0ϵpt<0 ,则取 Nt=0 。同时,若市政府设置了最大游客限额 Nmax ,则还要满足 Nt≤Nmax 。

1.4 环境动态与社会满意度

为了体现正反馈机制:当政府对环境和社区投入越多,长期环境与社会状态会得到改善,从而吸引更多游客,反过来促进经济收益。我们可用简单的差分方程来描述:

环境状态演化 Et+1=Et+a⋅Ntb⋅Ienv,t, a⋅Nt 表示游客活动带来的环境压力增加量($a>0$为系数), b⋅Ienv,t 表示通过环境投资带来的修复或减缓量($b>0$为系数)。 在长时间尺度下, Et 过大意味着环境严重恶化。

社会满意度演化 St+1=St+c⋅Isocial,td⋅Nt, c⋅Isocial,t 表示社会福利投入对满意度的提升, d⋅Nt 表示过度游客带来的拥挤、扰民、生活成本上涨等对满意度的负面影响。

1.5 经济目标与综合目标

1.5.1 经济收益

一个简单的净经济收益定义为:

NetRevenuet=Rtβenv⋅Etβinfra⋅CostInfra(Iinfra,t),

其中 $\beta_{\text{env}} \cdot E_t$ 可以看作环境恶化带来的社会或经济隐性损失费用。若不想明确金钱化,也可以在多目标中单独对 $E_t$ 进行约束或最小化。 $\text{CostInfra}(I_{\text{infra},t})$ 代表基础设施建设本身的投入成本或更新维护,但也能带来正面效益(如分流更多游客,提升长期收益),这里做简化仅做象征性说明。

1.5.2 多目标形式

因为可持续旅游往往涉及经济、环境、社会三重目标,本题鼓励把这三方面都纳入模型。一个多目标规划示例:

max{∑t=1TNetRevenuet,−∑t=1TEt,∑t=1TSt}subject to 0≤Nt≤max{Dt0ϵpt,Nmax},Et+1=Et+aNtbIenv,t,St+1=St+cIsocial,tdNt,Ienv,t=αenv⋅(ptNt), …,pt,Nt,Ienv,t,Iinfra,t,Isocial,t≥0.

如不想处理多目标复杂性,可使用加权和或其他方法将其转化为单目标。

二、敏感性分析思路

关键参数:需求弹性系数 ϵ 、环境修复效率 b 、社会福利效率 c 、决策变量 pt 、以及各分配比例 αenv 、 αinfra 、 αsocial 等。

分析方法: 单因素敏感性:固定其他参数,改变某一参数,看最优策略或目标函数的变化。 多因素敏感性:对多个参数进行网格/随机采样(如拉丁超立方抽样),评价模型在不同参数组合下的稳健性。

结果解读: 若 ϵ (需求弹性)很大,则征收高税费可能使游客大量流失,导致总收入下降; 若 $b$(环境修复效率)大,说明环境投资见效快,可以适度增加税费投入环境; 若 αenv 太小,环境容易在中长期恶化,可能降低今后游客吸引力; 若 αsocial 太小,当地居民会不满并可能抵制旅游,导致长期收益受损。

三、示例 Python 代码及可视化

下面给出一个简化版示例,采用离散时间步数 T=10 。在该示例中:

我们将单一税率 p 视为固定决策变量(不随时间变化),以便做一个参数扫描;

基础需求 D0 取固定常数(也可改为时变);

分配比例 αenv,αinfra,αsocial 固定。

我们用一个简单系统动力学循环更新 Et 和 St ,然后绘制结果曲线,以演示如何进行初步可视化分析。

import numpy as np
import matplotlib.pyplot as plt

def simulate_tourism(
T=10,
p=30.0,# 政府征收的固定税费
D0=20000,# 基础需求 (无税费下游客数量)
epsilon=200, # 需求弹性系数
alpha_env=0.4, # 额外收入在环境方面的投入比例
alpha_infra=0.3, # 额外收入在基础设施方面的投入比例
alpha_social=0.3,# 额外收入在社会福利方面的投入比例
a=0.001, # E(t+1) = E(t) + a*N(t) b*I_env(t)
b=0.01,# 环境修复效率
c=0.02,# 社会福利提升效率
d=0.0005,# S(t+1) = S(t) + c*I_social d*N(t)
E0=50.0, # 初始环境压力
S0=50.0, # 初始社会满意度
base_spend=100.0,# 游客人均基础消费
):
"""
返回 (list_E, list_S, list_N, list_R, list_Ienv, list_Isoc) 
分别为每个时段的环境压力、社会满意度、游客数量、总收入及两项投资额
"""
# 初始化
E = E0
S = S0

list_E = [E]
list_S = [S]
list_N = []
list_Revenue = []
list_Ienv = []
list_Isoc = []

for t in range(T):
# 1) 计算N(t): 线性需求
N = D0 epsilon * p
if N < 0:
N = 0

# 2) 计算额外收入 R_extra = p * N
R_extra = p * N

# 3) 各个投资
I_env = alpha_env * R_extra
I_infra = alpha_infra * R_extra
I_soc= alpha_social * R_extra

# 4) 更新环境 E
# E_{t+1} = E_t + a*N b*I_env
E = E + a*N b*I_env
list_E.append(E)

# 5) 更新社会满意度 S
# S_{t+1} = S_t + c*I_soc d*N
S = S + c*I_soc d*N
list_S.append(S)

# 6) 总旅游收入: base_spend*N + R_extra
total_revenue = base_spend*N + R_extra

list_N.append(N)
list_Revenue.append(total_revenue)
list_Ienv.append(I_env)
list_Isoc.append(I_soc)

return list_E, list_S, list_N, list_Revenue, list_Ienv, list_Isoc


# ========== 主程序演示 ==========

if __name__ == "__main__":
# 我们做一个简单的税费 p 在 [0, 50] 的变化扫描,查看对环境、社会、收入的影响

ps = np.linspace(0, 50, 11)# 0,5,10,...,50
final_Revenues = []
final_Envs = []
final_Socs = []

for tax in ps:
E_list, S_list, N_list, R_list, Ienv_list, Isoc_list = simulate_tourism(p=tax)

# 取最后一期的指标或平均值来观察
avg_Revenue = np.mean(R_list)
final_Revenues.append(avg_Revenue)

last_E = E_list[-1]
final_Envs.append(last_E)

last_S = S_list[-1]
final_Socs.append(last_S)

# 可视化 p 与 平均收入/最终环境/最终社会满意度 的关系
fig, ax = plt.subplots(1, 3, figsize=(15, 4))

ax[0].plot(ps, final_Revenues, marker='o', label='Avg Revenue')
ax[0].set_xlabel('Tax p')
ax[0].set_ylabel('Average Revenue')
ax[0].set_title('Tax vs. Avg Tourism Revenue')
ax[0].grid(True)

ax[1].plot(ps, final_Envs, marker='s', color='r', label='Environment End Level')
ax[1].set_xlabel('Tax p')
ax[1].set_ylabel('E(T) (Environment level)')
ax[1].set_title('Tax vs. Environmental Pressure')
ax[1].grid(True)

ax[2].plot(ps, final_Socs, marker='^', color='g', label='Social End Level')
ax[2].set_xlabel('Tax p')
ax[2].set_ylabel('S(T) (Social satisfaction)')
ax[2].set_title('Tax vs. Social Satisfaction')
ax[2].grid(True)

plt.tight_layout()
plt.show()

3.1 代码说明

  1. simulate_tourism 函数 输入包括税率 p、基础需求 D0、需求弹性系数 epsilon、环境/社会动态参数等,输出在 $T$ 个时段中更新的环境、社会满意度、游客数量、收入等时序数据。 核心使用了前面提到的公式: Nt=D0ϵ⋅p,Et+1=Et+aNtbIenv,t,St+1=St+cIsocial,tdNt.
  2. 主程序 扫描 ps = [0,5,10,...,50] 的税率,反复调用 simulate_tourism 得到各情形下的时序结果。 这里以“平均收入avg_Revenue、“最终环境状态last_E、“最终社会满意度last_S为简要评价指标,通过三张图展示税率变化对系统的影响。 结果可以让我们初步了解: 税率过低时,环境压力可能偏高、社会满意度可能偏低,但游客量高,短期收入也可能比较大; 税率过高时,游客量显著减少,但环境和社会满意度可能提升,却也可能降低整体收入; 中间区间或某个最优值平衡了经济与环境、社会之间的关系。

四、模型与可视化结果讨论

  1. 曲线倾向: Average Revenue 随 $p$ 上升,可能先升后降,因为适度的税收提高了收入,但若税费过高导致游客流失,收入也会再度下降。 Environment End Level (E_T) 大概率随 $p$ 升高而下降(因为游客减少带来更小的环境增量;且投入更多环境资金)。 Social Satisfaction (S_T) 也往往随税率提高而有所提升(游客变少,且社区获得更多福利资助),但若太少游客导致经济不振,也可能间接拉低社会满意度。
  2. 平衡点:从多目标角度看,往往会在中间存在一个使经济收益、环境指标、社会指标综合最优的点。此时就可以做Pareto前沿分析,或根据决策者倾向选取合意解。
  3. 进一步拓展: 如果要添加基础设施容量(如邮轮泊位限制、最大游客容量等),可以在模型中加一条约束 $N_t \le N_{\max,t}$。 若想纳入累积性环境阈值,如 $E_t$ 不得超过某个极限,否则系统崩溃,可在模拟过程中进行判断并停止或惩罚。

总结

通过上述数学模型和示例代码,我们向读者展示了:

如何定义游客数量、环境和社会状态以及相应的正反馈机制; 如何将额外税收分配到环境、基础设施、社会福利,并分别对环境压力和社会满意度产生影响; 在简单场景下,如何用 Python 进行模拟仿真和可视化,以探索不同政策参数(如税率)的效果。

下面的内容针对2025 MCM Problem B:问题2进行更详细的解题思路阐述。本问题重点讨论了:

“如何将之前在朱诺市建立的可持续旅游模型,适配到其他同样受到过度旅游影响的地点?不同地点的差异如何影响最重要的干预措施?如何利用这个模型来疏导游客,促进旅游资源更均衡地分配?”

以下将从模型适配的思路数学建模Python可视化示例代码三个部分进行说明。

二、问题 2:

一、模型适配的思路

在问题1(朱诺市可持续旅游模型)中,我们已经提出了一个包括经济、环境、社会三个维度的多目标或多指标综合模型。该模型关注: 1. 游客数量 (N) 2. 旅游收入 (R) 3. 环境指标 (E) 4. 社会指标 (S) 5. 可能的调控手段:税费、限流、基础设施与社区福利投资等。

当我们要将此模型移植到另一个同样面临“过度旅游”问题的目的地时,关键要点在于: 1. 地理与资源禀赋:例如海岛、历史遗迹、自然保护区等,其环境承载力和主要吸引力不同。 2. 主要矛盾不同:有的地方淡水资源极为稀缺(海岛);有的地方文化遗产保护要求高(古城、遗迹);有的地方过度依赖空运或邮轮(导致碳排放尤其突出)。 3. 调控政策侧重点:如海岛可采用游客预约上岛制度并加强废物回收;古城则应严格管控建筑保护区游客量;某些地区则鼓励游客分流到周边次级景点等。

因此,最主要的改动包括: 环境容量函数环境成本函数:根据不同地区的生态特点调整; 社会满意度/社会成本函数:对当地人对旅游依赖程度、反感程度、房价压力、文化冲击等加以新的权重或函数形式; 经济收益预测:游客结构、消费水平可能不同,需要据实修改游客需求函数与人均消费水平。 交通与碳排放模型:若新的目的地对航空或邮轮运输依赖度很高,需在模型中着重体现碳排放成本并可能增加碳税或环保补偿机制;

在模型总体结构不变的情况下,只需替换/调整相应参数,即可完成新地点的适配。

二、数学建模:多地点(景点)可持续旅游分配模型

为使“推广游客到其他景点/目的地”这一要求更直观,我们在此构造一个多景点版本模型示例。假设我们有目标地 $L$(原先是朱诺市)以及周边 $k = 1,2,\dots, K$ 个替代或补充景点。希望通过差异化定价、交通补贴、优惠宣传等方式,将部分游客分流到这些周边景点,以缓解主景点的过度拥挤,同时保持整体收益的可持续增长。

2.1 变量与参数定义

景点集合: K=0,1,2,…,K ,其中0代表“核心景点”(如门登霍尔冰川所在地),1~K代表周边或替代景点。

游客分配数量 Nt,k≥0,t=1,…,T;k∈K. 表示在时段$t$前往景点$k$的游客数。

潜在需求 总的或核心旅游潜在需求Dt=总的(或核心) 旅游潜在需求 但由于价格或分流策略,游客会按照某种函数分配到各景点$k$。

人均消费与附加费 景点的人均花费针对景点设置的额外费用税或优惠负税Pk=景点k的人均花费,pk=针对景点k设置的额外费用(税)或优惠(负税). 如对次级景点给出负费(优惠)或交通补贴,可用 −pk 表示。

环境与社会成本/效益 Ek(Nt,k) :景点 k 的环境负荷函数;

Sk(Nt,k) :景点$k$对当地社会的影响函数(若$N_{t,k}$适度增加也许正面;若过量则负面)。

投资与收益 整体旅游税费收入 ∑k∈Kpk⋅Nt,k 。

投资分配比率: αenv,αinfra,αsocial 。 不同地点可能共享或单独享受这部分投资,例如: 总税费收入Ienv,k(t)=αenv⋅[pk⋅Nt,k∑k∈K(pk⋅Nt,k)]×(总税费收入). 或者政府根据政治因素单独制定投资优先级。

全文过长,省略部分内容~

三、Python 可视化例程(示例代码)

为了帮助展示如何将该模型用于多个地点的情形,以下给出一个“示范性质”的 Python 代码示例。这个示例主要关注如何: 1. 定义多地点的环境、社会收益函数; 2. 在给定的游客需求下,如何通过简单的迭代或启发式算法进行分配; 3. 将结果进行可视化(如在不同景点上的游客分布、环境压力、总体收益等)。

说明: 此示例使用了 random或简单公式的模拟来表示环境/社会函数,未必是最优或完全真实的数据; 若要进行正式的多目标优化,可考虑引入专门的包,如 pyomopulportools 或在多目标场景下使用元启发式算法(如遗传算法 deappymoo等)。
import numpy as np
import matplotlib.pyplot as plt

# --
# 1. 参数与函数定义
# --

# 时间区间:T个时段
T = 10
time_periods = np.arange(1, T+1)

# 景点集合(含核心景点0和替代景点1,2...)
K = 3# 例如K=3表示k=0,1,2
sites = np.arange(K)

# 潜在需求 D_t (简单假设每时段相同,也可写成数组)
D = np.array([5000]*T)# 每个时段有5000名潜在游客

# 每个景点的承载力上限
N_max = np.array([3000, 2000, 2500])

# 每个景点的人均消费 P_k (不含税费)
P = np.array([100, 70, 50])

# 税费/补贴 p_k (这里先固定,若要动态优化可将它作为决策变量)
p = np.array([20, 0, -10]) 
# 解释:对景点0征收20美元附加费,对景点1不征收,对景点2还给予10美元补贴(负费用)

# 目标函数权重
w1, w2, w3 = 1.0, 0.3, 0.5

# 定义一个环境负荷函数 E_k(N) 和社会满意度函数 S_k(N)
# 为演示,我们采用简单的可调函数:
def E_k(k, N):
# 假设环境负荷随游客量N呈线性+二次混合: alpha * N + beta * N^2
if k == 0:
return 0.001 * N + 0.0001 * N**2
elif k == 1:
return 0.0008 * N + 0.00005 * N**2
else:
return 0.0009 * N + 0.00008 * N**2

def S_k(k, N):
# 假设社会满意度在一定N范围内是正的(带来就业收入), 超过某阈值后出现拥挤负效应
# 这里简单用一个分段或负抛物线模型:
# S_k(N) = a*N b*N^2,(a,b根据景点k区分)
# 省略部分内容

# --
# 2. 简单求解思路
# --
# 在此,我们演示一个非常简化的"贪心搜索"或"启发式":逐时段把游客分配到使得目标增量最大的景点。
# 真实情况可用线性规划、整数规划或元启发式算法更好地求解。

def heuristic_allocation(D_t, N_max, P, p, w1, w2, w3):
"""
对于单个时段的潜在需求D_t,进行多景点游客分配的启发式方法。
返回各景点分配结果N_k (array of size K)。
"""
K = len(N_max)
N_alloc = np.zeros(K)# 初始分配0
remaining = D_t

# 分批次将"1人"(或更大步长)分配到对目标贡献最高的景点
step = 100# 每次分配的人数步长,示例用100
while remaining >= step:
best_gain = None
best_site = None

for k in range(K):
if N_alloc[k] + step <= N_max[k]:
# 计算"边际贡献"
current_E = E_k(k, N_alloc[k])
current_S = S_k(k, N_alloc[k])
# 分配step后
new_E = E_k(k, N_alloc[k] + step)
new_S = S_k(k, N_alloc[k] + step)

# 省略部分内容

# 省略部分内容

if best_site is not None:
N_alloc[best_site] += step
remaining -= step
else:
# 如果没有可分配的地方(承载力都满了或者无增益为正),停止
break

# 如果还有剩余,但承载力都不允许了,就只能放弃分配
return N_alloc

# --
# 3. 对所有时段进行分配
# --
# 省略部分内容

# --
# 4. 计算可视化指标
# --
total_revenue = np.zeros(T)
total_env = np.zeros(T)
total_soc = np.zeros(T)

for t in range(T):
for k in range(K):
Nval = alloc_results[t, k]
# 收益
total_revenue[t] += (P[k] + p[k]) * Nval
# 环境
total_env[t] += E_k(k, Nval)
# 社会
total_soc[t] += S_k(k, Nval)

# --
# 5. 绘图可视化
# --
plt.figure(figsize=(10, 6))

plt.subplot(2,2,1)
for k in range(K):
plt.plot(time_periods, alloc_results[:, k], label=f"景点{k}")
plt.xlabel("时段 t")
plt.ylabel("分配游客数 N_{t,k}")
plt.title("不同时段各景点的游客分配")
plt.legend()

plt.subplot(2,2,2)
plt.plot(time_periods, total_revenue, marker='o')
plt.xlabel("时段 t")
plt.ylabel("总收益")
plt.title("时段总收益")

plt.subplot(2,2,3)
plt.plot(time_periods, total_env, marker='o', color='red')
plt.xlabel("时段 t")
plt.ylabel("环境压力 (E)")
plt.title("时段环境压力")

plt.subplot(2,2,4)
plt.plot(time_periods, total_soc, marker='o', color='green')
plt.xlabel("时段 t")
plt.ylabel("社会满意度 (S)")
plt.title("时段社会满意度")

plt.tight_layout()
plt.show()

3.7 结果解读

以上示例是一个极简版,“贪心”或“启发式”分配可能并不保证全局最优。但它展示了: 1. 多景点(k=0,1,2)的游客如何分配; 2. 分配结果如何影响收益、环境压力、社会满意度。 如果将此示例中的参数替换为另一个实际旅游目的地的环境承载力函数E_k()以及社会满意度函数S_k(),便可以模拟不同地区的状况。 若想要动态更新各景点的承载力$N_max,k(t+1)$,可以在每一时段末计算基础设施投资,再在下一时段前对N_max,k进行调整。这样就可以模拟“正反馈”对于可持续发展的影响。

四、如何利用该模型实现“游客更好的平衡”

从上例可以看出: 1. 如果核心景点0人均消费高、税费也高,但环境代价很大,在模型优化时,系统往往会将部分游客分流到周边景点1、2,以降低整体环境负荷并提升社会满意度(也可能视具体函数而定)。 2. 对周边景点可以设置负税优惠(即p[k]为负),吸引游客转移,从而减轻对核心景点的压力。 3. 通过基础设施投资来提高周边景点的接待能力,从而进一步提升分流效果。

在实际应用: 可以设置更复杂的出行成本(交通花费或时间成本),或采用机票、船票、景区联票的定价体系; 可以纳入更多社会因素(文化冲击、居民抗议等),赋予周边地区不一样的“社会满意度”曲线。

五、小结

针对问题2: 核心思路:将原本单地点的可持续旅游模型,扩展为多地点或多景点的分配与协调问题;并根据不同地点的特点(环境、社会、经济)对相应参数进行替换或调整。 最重要的干预措施将因地而异。例如,在海岛可能更注重淡水与废物处理能力提升;在历史古城更注重游客限流与文化遗产保护;在交通不便地区(且依赖航班)则或许更关注航空碳排放和交通补贴策略。 更好的平衡:通过差异化定价基础设施投资景点宣传等手段,引导部分游客向游客量相对较少的景点流动,以实现总收益、环境保护和社会满意度的综合提升。

在竞赛或实际研究中,可进一步使用线性规划、非线性规划或多目标进化算法(如NSGA-II, MOEA)等更先进的方法对上述模型进行全局最优或近似全局最优的求解,并结合敏感性分析来确定最关键的参数。这样便能在更多场景下灵活移植、复制或对接真实数据,帮助决策者制定可持续旅游政策。

参考提示

  1. 多目标优化:可使用 pymoodeap 等Python包,以更完整地研究 Pareto 前沿。
  2. 不确定性:若不同年份(或季节)游客潜在需求 $D_t$ 有很大的不确定性,可将模型扩展到随机规划或鲁棒优化框架。
  3. 社会与环境函数:若有真实数据或问卷,可以用回归/机器学习技术来拟合$E_k(N)$ 与$S_k(N)$。

备忘录

下面是一份示例性的“给朱诺旅游委员会的简短备忘录”,以一页篇幅为限,概括当前研究模型所得到的预测结果、不同政策措施的效果以及优化建议。在正式提交中,你可以根据团队实际的计算结果、图表与分析进行适当的修改或精简,使之与模型的定量结论相吻合。

给朱诺旅游委员会的简短备忘录

致: 朱诺旅游委员会 发件人: 某研究团队某研究团队 主题: 关于朱诺市可持续旅游策略的简要建议与预测 日期: 年月日年月日

尊敬的委员们:

鉴于朱诺市当前面临的过度旅游压力,以及门登霍尔冰川正逐渐退缩带来的潜在风险,我们基于近期收集的数据显示,在游客数量、环境保护、社会满意度三方面存在明显的矛盾。为帮助贵委员会做出科学、平衡的决策,我们进行了可持续旅游模型研究,现就我们的预测与建议做简要说明。

一、核心预测结果

  1. 游客总量与经济收益: 如果不采取任何限制或额外收费措施,预计未来 5 年内游客数量仍将保持 4%~7% 的年增长率,年旅游收入会继续增加。但模型显示,随着环境与社会成本的累积,超过一定阈值后,过度拥挤和环境退化会导致游客满意度显著下降,长远来看可能使旅游吸引力受损,并引发游客量的拐点下降。
  2. 环境压力和冰川衰退风险: 过多的邮轮与游客活动产生额外的碳排放和环境扰动,对冰川和周边雨林生态系统带来加速退缩与生境破坏的风险。若维持当前增长趋势,模型预测在未来 6~8 年内,冰川景观对游客的吸引力或将大打折扣。
  3. 社会满意度与社区负担: 当游客量超过日均 2 万人次时,交通拥堵、噪音干扰、房价上涨和生活成本提高,均会导致居民满意度下降,部分依赖旅游业的社区也将面临用工荒或人员流失风险。若不能保持良好的社区-旅游平衡,极端情况下可能出现大规模居民抗议或迁离。

二、主要措施效果评估

  1. 增加酒店税 / 游客费: 模型显示,适度提高每名游客的税费(如每人 5~10 美元)对游客需求的打击较小,而这些收入能为城市带来相当可观的财政资金。 若在征收过程中配合更透明的“旅游附加费用向公示”,将有助于赢得游客理解,并在环境保护及社区福利方面产生正反馈
  2. 限制高峰期或日均游客数量: 通过每日或每季进行限流,可以有效减轻交通与基础设施的瞬时负荷,延缓环境退化的速度,也能提升旅游体验质量。 同时需要与邮轮公司合作,灵活安排靠岸时段或分流到周边小型港口。
  3. 基础设施与社区福利的投入: 模型结果显示,若能将额外征收的 30%~40% 税收投入到交通升级、废物回收体系以及住房补贴等方面,可显著降低居民不满与环境破坏速度,形成良性循环。 对社区的支持投入在 5 年期后会带来更显著的社会满意度回升,以及旅游口碑的提升。

三、优化建议

  1. 分层定价 + 限流:在对邮轮游客与自由行游客制定分层定价的同时,设定日均游客上限,避免出现短期内过度拥挤。
  2. 专项基金用于环境与社区项目:将税费中约一半专门用于自然保护区维护、冰川监测项目以及基础设施改造;另一半用于改善本地居民的住房与公共服务,从而获得社区对旅游业的支持与合作。
  3. 促进客流分散与季节调控:通过降低淡季税费、加强周边景点宣传等方式,将游客在时间与空间上更均匀地分散,降低对冰川核心区的压力。
  4. 定期监测与动态调整:建立数据实时监测机制,每年或每季评估游客满意度、冰川退缩速度和居民反馈,并根据最新情况实时微调门票或税率,保持可持续发展的弹性。

四、结语

综合而言,我们的预测模型强调:若朱诺市能在现阶段建立合理的游客限流政策,并将新增财政收入针对性地投向环境保护与基础设施建设,就能在未来 5~10 年内实现旅游经济与本地社会、自然环境的相对平衡。 我们期待与贵委员会进一步合作,就以上建议开展更深入的数据分析与实施方案的制定。若有任何疑问或需要更多细节,请随时联系。

此致 某研究团队签名 日期

四、总结

在以上分析中,我们将可持续旅游问题抽象成包含经济、环境与社会三重目标的多目标优化或系统动力学问题。它要求我们充分考虑: 1. 经济-社会-环境三位一体的平衡; 2. 政策干预所产生的正面与负面影响; 3. 动态反馈不确定性(尤其要进行敏感性分析)。

接下来,若在实际建模中,需要基于具体数据(如朱诺历年游客量、邮轮次数、当地居民满意度调查等)对模型进行校正和参数估计。为提升模型的预测准确性,可结合机器学习(如ARIMA、LSTM)对游客量、环境指标等进行时序预测,然后再嵌入到系统动力学或多目标规划框架中进行综合分析与优化。

最终,我们希望通过在模型中引入合理的“可持续指标体系”与“税收/费用/限流”等政策工具,平衡短期与长期利益,确保朱诺在未来仍能保持稳定的旅游收入并且具备健康的生态与社会环境。这不仅适用于朱诺本地,对其他面临过度旅游压力的目的地亦具有借鉴意义。


以上即为对 MCM 2025 Problem B 的中文翻译、整体分析以及详细的求解思路示例性阐述。参赛团队在具体实施中,可根据赛题要求、手头的数据状况以及自身擅长的模型/算法进行灵活组合与扩展,并通过敏感性分析、模型验证与改进,完成最终的研究报告与备忘录。祝参赛顺利!

由于赛程时间紧急,后续详细完整内容可能无法在知乎及时同步更新,欢迎进一步自行获取~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值