TD-LSTM & AT-LSTM

在这里插入图片描述
在这里插入图片描述

论文阅读准备

前期知识储备

在这里插入图片描述

学习目标

在这里插入图片描述

论文导读

论文研究背景、成果及意义

在这里插入图片描述
粗粒度的情感分类问题,左边是一个个句子,右边是句子多对应的积极或消极。
传统的情感分析(SA)主要是面向文档或句子,也就是文档层面的情感分类(document-level sentiment classification),这种粗粒度的分类只考虑文档整体的情感倾向性(sentiment polarity),在现实应用中是不够用的。
Aspect和Target
Aspect level task,认为句子中包含更加细粒度的aspect,这些aspect里面包含不同句子的属性。例如:

这件衣服款式挺漂亮的,但是尺码也太小了吧!

方面词可能会出现在句子里面,也有可能不出现在句子里面,Target是一定出现在句子里面。
SemEval-2014数据集
http://alt.qcri.org/semeval2014/task4
在这里插入图片描述

  • 1.aspect抽取(aspect term extraction);
  • 2.判断aspect上的情感倾向(aspect term polarity);
  • 3.判断aspect所属的范畴(aspect category detection);
  • 4.判断aspect category上的情感倾向
    句子+此句子确定的属性类别,判断情感极性。
    Attention种类
    在这里插入图片描述

论文泛读

论文结构

在这里插入图片描述

摘要—AT-LSTM

本文将attention与lstm结合在一起,通过attention去获取对不同aspect更重要的上下文信息,来解决aspect level情感分析问题,SemEval 2014数据集进行了实验,结果表明模型在aspect-level 的情感分类上达到了最先进的性能。

摘要—TD-LSTM

  • 文章主要针对依赖于目标的情感分类问题,在标准LSTM的基础上,提出Target-Dependent Long Short-Term Memory (TD-LSTM)和Target-Connection Long Short-Term Memory(TC-LSTM)两个模型,实验结果表明这两种模型相对basic lstm都有较大提升,后者提升更多;
  • 与aspect level 情感分析类似,对于target-dependent情感分析来说,主要问题就是将target-dependent和相应的context words的语义信息结合起来,由此推断不同上下文对判断不同的target的情感倾向的影响,以分析相应target的情感倾向。

论文精读

论文算法模型总览

在这里插入图片描述

LSTM

在这里插入图片描述
target words在数据集中已经标注好,lstm不区分target words,和其他词一样,都输入到lstm中。

论文算法模型细节

论文一

TD-LSTM

在这里插入图片描述
【例】
在这里插入图片描述

target words之间的内容既经过了前向的特征提取以及后向的特征提取,在语义信息提取上比其他的地方会更多一些。作者在论文中提到将target设为lstm的最后一个时刻的输入,能更充分的利用target的语义信息。
在这里插入图片描述

TC-LSTM

在这里插入图片描述
【例】
在这里插入图片描述
将target words的上下文信息利用起来,并且还将target words的信息也利用起来。

论文二

aspect-level与target是比较相似的,target是在句子中肯定会出现的,它相当于是aspect-level的一个子集,aspect-level有的会在句子中出现,有的不会在句子中出现。

AT-LSTM

在这里插入图片描述
AspectEmbedding没有经过lstm,而是加在了hidden上面,其实AspectEmbedding没有顺序的关系,因此直接加到上面是没有太大影响的。
公式如下图:
在这里插入图片描述

ATAE-LSTM

在这里插入图片描述
Aspect Embedding重复利用了两遍,LSTM是具有顺序的关系,下面的Aspect Embedding输入到lstm是有一定的顺序的关系,会提取到顺序的信息,但不一定有意义,下面的Aspect Embedding经过lstm后可能会有一部分的信息会丢失,因此在上面又拼接了Aspect Embedding,有点像残差网络。

为了利用好句子中的目标词的信息,两篇论文的作者在模型上做了改进,TD-LSTM直接按照target将句子进行切分,将句子重复利用,传统的lstm只是单向的获取特征;TC-LSTM将target信息作为输入,并从前面和后面分别提取特征,进行融合。

实验设置及结果分析

在这里插入图片描述

实验数据

数据集
在这里插入图片描述
在这里插入图片描述

实验结果及分析

论文一

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

论文二

在这里插入图片描述
在这里插入图片描述

论文总结

论文一

在这里插入图片描述

论文二

在这里插入图片描述
在这里插入图片描述
根据输入数据的格式,可以将模型改造成适合输入数据的一种结构,更加充分的利用语义上的信息;
基于数据对模型做出的结构上的改进。

《多模态深度学习中的几种时间序列模型详解》 MC-SCNN-LSTM(Multimodal Convolutional-Sequential Convolutional Neural Network with Long Short-Term Memory),是一种结合了多模态输入和长短期记忆网络(LSTM)的深度学习架构。这种模型常用于处理包含视觉(如图像)和文本等不同类型信息的时间序列数据,如视频描述生成。它首先通过卷积神经网络(CNN)对图像特征进行提取,然后使用SCNN(Sequential Convolutional Neural Network)来捕捉序列信息,最后将这些特征输入到LSTM单元中,以捕捉长期依赖性。 MC-LSTM (Multimodal LSTM)则是一个简化版本,只保留了多模态输入和LSTM部分。这类模型通常适用于单一类型的多通道时间序列分析,比如音频和文字同时作为输入。 SC-LSTM(Sequential Convolutional LSTM)专指只应用在序列数据上的卷积LSTM结构。相比于标准的LSTM,SC-LSTM使用卷积操作代替全连接层来处理序列中的局部依赖性,这使得模型对于空间上的信息有更高效的利用,并能适应变长序列。 SC-CNN-LSTM则是结合了SC-LSTM和CNN的特性。它首先通过CNN捕获空间信息,再通过SC-LSTM处理时间序列部分,这在视频或其他时空相关的数据上非常有效,能够同时考虑时间和空间维度的变化。 总结来说,这几种模型都旨在处理多模态或序列数据,通过融合不同层的设计提高模型性能和灵活性。它们各自侧重于处理的数据特点以及信息抽取的方式有所不同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值