图神经网络实战(20)——时空图神经网络
0. 前言
在经典图神经网络 (Graph Neural Networks, GNN) 中,我们只考虑了边和特征不会发生变化的图数据。然而,在现实世界中,多数应用充满动态性。例如,在社交网络中,人们会关注或取关其他用户,个人资料也会随着时间的推移而发生变化。这种动态性无法用经典 GNN
架构来表示。必须嵌入一个新的时间维度,将静态图转化为动态图 (dynamic graph
)。然后,这些动态图将作为一类新 GNN
的输入——时空图神经网络 (Temporal Graph Neural Networks
, TGNN
,或 Spatio-Temporal GNN
)。
在本节中,我们将介绍两种包含时空信息的动态图,并重点关注时间序列预测,这也是时空 GNN
的主要应用领域。然后介绍网络流量预测应用,利用时间信息来改进结果,获得可靠预测。
1. 动态图
动态图 (dynamic graph
) 和时空图神经网络 (Temporal Graph Neur