图神经网络实战(20)——时空图神经网络

0. 前言

在经典图神经网络 (Graph Neural Networks, GNN) 中,我们只考虑了边和特征不会发生变化的图数据。然而,在现实世界中,多数应用充满动态性。例如,在社交网络中,人们会关注或取关其他用户,个人资料也会随着时间的推移而发生变化。这种动态性无法用经典 GNN 架构来表示。必须嵌入一个新的时间维度,将静态图转化为动态图 (dynamic graph)。然后,这些动态图将作为一类新 GNN 的输入——时空图神经网络 (Temporal Graph Neural Networks, TGNN,或 Spatio-Temporal GNN)。
在本节中,我们将介绍两种包含时空信息的动态图,并重点关注时间序列预测,这也是时空 GNN 的主要应用领域。然后介绍网络流量预测应用,利用时间信息来改进结果,获得可靠预测。

1. 动态图

动态图 (dynamic graph) 和时空图神经网络 (Temporal Graph Neur

评论 34
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值