1x1卷积定义
在深层卷积网络中,同一个卷积核用于提取通道内特征,不同的卷积核用于提取通道间特征,然后进行融合。1x1卷积用于通道间的信息提取,在Network in Network中被用于增加网络深度,从而增强网络的非线性表达能力。
如果一个输入特征平面的大小为N1xHxW,用N1xN2个1x1卷积,就可以将其映射到N2xHxW的特征平面。当N1<N2时,实现通道升维;当N1>N2时,实现通道降维。
1x1卷积与瓶颈结构
“两头宽、中间窄”的网络结构被称为瓶颈结构。输入为N1xHxW的特征图,经过N1xN2x1x1的卷积,得到N2xHxW的特征图,当N2<N1时,实现降维;再经过N1xN2x1x1的卷积,得到N1xHxW的特征图,实现升维,过程与自编码器Encoder-Decoder结构类似。瓶颈结构不仅增加了网络的深度,还减小了计算量和参数量。
参考:
《深度学习之模型设计核心算法与案例实践》