1x1卷积笔记

1x1卷积在深度网络中用于通道间信息提取和融合,通过调整通道数量实现特征维度的升降。在网络设计中,1x1卷积常与瓶颈结构结合,降低计算复杂度同时增加网络深度。瓶颈结构通过先降维再升维,有效减少了参数量并增强了模型的表达能力。
摘要由CSDN通过智能技术生成

 1x1卷积定义

        在深层卷积网络中,同一个卷积核用于提取通道内特征,不同的卷积核用于提取通道间特征,然后进行融合。1x1卷积用于通道间的信息提取,在Network in Network中被用于增加网络深度,从而增强网络的非线性表达能力。

        如果一个输入特征平面的大小为N1xHxW,用N1xN2个1x1卷积,就可以将其映射到N2xHxW的特征平面。当N1<N2时,实现通道升维;当N1>N2时,实现通道降维。

1x1卷积与瓶颈结构

        “两头宽、中间窄”的网络结构被称为瓶颈结构。输入为N1xHxW的特征图,经过N1xN2x1x1的卷积,得到N2xHxW的特征图,当N2<N1时,实现降维;再经过N1xN2x1x1的卷积,得到N1xHxW的特征图,实现升维,过程与自编码器Encoder-Decoder结构类似。瓶颈结构不仅增加了网络的深度,还减小了计算量和参数量。

 参考:

        《深度学习之模型设计核心算法与案例实践》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值