1×1卷积在神经网络中的理解和应用

1×1卷积在深度学习中起到信息融合和降低计算量的作用。它能将多通道信息融合,如在MobileNet的Depthwise和Pointwise操作中,通过减少计算量来提升效率。此外,1×1卷积常用于网络结构如GoogLeNet的Inception模块中进行维度调整。这种技术在ResNet和MobileNet等模型中也有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1×1卷积

我们经常会在各种网络中看到1×1的卷积核,这是一个非常实用的卷积核,那么为什么要使用1×1的卷积核呢?
我们可以从两个角度进行理解

信息融合

在这里插入图片描述
1×1卷积运算可以将多个通道的信息进行融合,例如上图中三个通道进行卷积后,变为一个通道,不同通道相同位置的像素会被加权相加在结果像素中。
在MobileNet中,需要进行Depthwise和pointwise操作:
在这里插入图片描述

  • Depthwise:将每一个通道分为一个组,每组一个卷积核专门负责这一个通道的卷积,相比于普通的卷积,计算量大大下降
  • Poinwise:因为每一个通道间都有关联,若只进行Depthwise会损失很多信息,我们需要将多个不相关的通道中的信息进行融合,就需要用到1×1卷积

升降维(减小计算量)

在这里插入图片描述

如上图所示,如果仅采用5×5的卷积核进行运算,那么我们的计算量是in_channels * Win * Hin * kernel_size ^ 2 * out_channels * Wout * Hout = 120,422,400

若先经过1×1的卷积运算将通道数将为16后在进行5 * 5的卷积运算,那么运算量会减少到十分之一

由此我们可以得到,通过1 * 1的卷积运算可以大大降低卷积运算的运算量

应用:googlenet每一个Inception最后、ResNet用于升降维、MobileNet 中的Pointwise
如下图所示(GoogleNet中的一个Inception):
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值