pytorch dataloader和batch_size大小的理解

pytorch中dataloader的大小将根据batch_size的大小自动调整。如果训练数据集有1000个样本,并且batch_size的大小为10,则dataloader的长度就是100。

需要注意的是,如果dataset的大小并不能被batch_size整除,则dataloader中最后一个batch可能比实际的batch_size要小。例如,对于1001个样本,batch_size的大小是10,train_loader的长度len(train_loader)=101,最后一个batch将仅含一个样本。可以通过设置dataloader的drop_last属性为True来避免这种情况。

Pytorch的Dataset提供了得到dataset中单个样本的接口,即通过使用index下标来获得单个样本数据。Dataloader用来提供batch个样本供模型训练

 

iteration: 1个iteration 等于使用batchsize个样本训练一次

epoch: 1个epoch等于使用训练集中的全部样本训练一次

class MyDataset(Dataset):
    def __init__(self, size):
        self.x = torch.randn(size, 1)
    
    def __getitem__(self, index):
        return self.x[index]

    def __len__(self):
        return len(self.x)

dataset = MyDataset(1001)

data_
这个错误是由于使用了不安全的函数`sprintf`,而建议使用安全的函数`sprintf_s`。为了解决这个问题,您可以按照编译器的建议,使用`sprintf_s`函数替代`sprintf`函数。 下面是相应地修改后的代码: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <io.h> void listFiles(char *path) { struct _finddata_t file_info; intptr_t handle; char file_path[256]; sprintf_s(file_path, sizeof(file_path), "%s\\*.*", path); handle = _findfirst(file_path, &file_info); if (handle == -1) { printf("无法打开目录: %s\n", path); return; } do { if (strcmp(file_info.name, ".") != 0 && strcmp(file_info.name, "..") != 0) { printf("%s\n", file_info.name); if (file_info.attrib & _A_SUBDIR) { sprintf_s(file_path, sizeof(file_path), "%s\\%s", path, file_info.name); listFiles(file_path); } } } while (_findnext(handle, &file_info) == 0); _findclose(handle); } int main() { char path[256]; printf("请输入目录路径: "); scanf("%s", path); listFiles(path); return 0; } ``` 在上面的代码中,我使用了`sprintf_s`函数来代替`sprintf`函数,并指定了目标缓冲区的大小。这样可以避免缓冲区溢出的安全问题。 另外,如果您不想看到关于`sprintf`函数的警告信息,您可以在代码的开头添加`#define _CRT_SECURE_NO_WARNINGS`来禁用相关警告。例如: ```c #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #include <string.h> #include <io.h> // ... ``` 这样编译时就不会再显示关于`sprintf`函数的警告信息了。请注意,禁用警告是有一定风险的,因此最好了解相关警告的含义并谨慎使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值