tensorflow/keras调用CPU而不使用GPU问题

在使用TensorFlow后端的Keras模型时,发现模型运行速度慢,原因可能是TensorFlow默认使用CPU而非GPU。解决方案是确保TensorFlow-gpu版本与cuda版本匹配,并升级tensorflow-gpu。通过在Python环境中检查设备,可以确认TensorFlow是否使用GPU。此外,提供了一种方法来检查TensorFlow是否能使用GPU。
摘要由CSDN通过智能技术生成

今天遇到一个bug,使用一个tensorflow后端的keras模型的时候,速度巨慢,后面发现是模型只使用了CPU,没有调用GPU。

1.解决方案

https://blog.csdn.net/qq_40829288/article/details/90509417
这个问题是由于tensorflow的版本高于tensorflow-gpu版本
首先查看版本

pip install

tensorflow 1.12.0
tensorflow-gpu 1.11.0
所以脚本默认调用了tensorflow而不是tensorflow-gpu
只需要将tensorflow-gpu升级即可

 pip install --upgrade tensorflow-gpu

注意!!!
如果直接使用上述命令,会将tensorflow-gpu升级到最新版本,注意和cuda版本的匹配
https://blog.csdn.net/qq_27825451/article/details/89082978

如何查看cuda版本

nvcc -V

所以升级时最好设置对应版本,例如

 pi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值