一些基于深度学习的视觉里程计/SLAM开源代码

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

作者:黄浴

https://zhuanlan.zhihu.com/p/139150194

本文转载自知乎,作者已授权,未经许可请勿二次转载。

这里重点是摄像头运动估计和定位,不是地图或者路标(landmark)。以前大家都知道SLAM结合深度学习最多的是语义SLAM,比如语义分割和语义目标识别。而这里强调的是里程计和定位。另外,忽略一些特征提取和匹配的方法。

1.DEMON

https://github.com/lmb-freiburg/demon

其方法如图所示

2. SfM Learner

https://github.com/tinghuiz/SfMLearner
方法如图

3. LEGO

https://github.com/zhenheny/LEGO

方法如图

4. Vid2Depth

https://sites.google.com/view/vid2depth

方法如图

5. DeepMatchVO

https://github.com/hlzz/DeepMatchVO

方法如图

6. DeepVO

ChiWeiHsiao/DeepVO-pytorch

krrish94/DeepVO

方法如图

7. DDVO

https://github.com/MightyChaos/LKVOLearner

方法如图

8. MonoDepth2

https://github.com/nianticlabs/monodepth2

方法如图

9. Depth VO Feat

Huangying-Zhan/Depth-VO-Feat

方法如图

10. SC SfM Learner

https://github.com/JiawangBian/SC-SfMLearner-Release

方法如图

11. GeoNet

https://github.com/yzcjtr/GeoNet

方法如图

12. Nvidia CC

https://github.com/anuragranj/cc

方法如图

13. DOP Learning

https://github.com/guangmingw/DOPlearning

14. EPC

https://github.com/chenxuluo/EPC

方法如图

15. DF-VO

https://github.com/Huangying-Zhan/DF-VO

算法如图

16. struct2depth

https://sites.google.com/view/struct2depth

方法如图

17. DF-Net

http://yuliang.vision/DF-Net/

方法如图

18. Samsung Odometry

https://github.com/saic-vul/odometry

方法如图

19. SfM-Net

https://github.com/augustelalande/sfm

方法如图

20. CNN-SVO

https://github.com/yan99033/CNN-SVO

方法如图

21. DeepTAM

https://github.com/lmb-freiburg/deeptam

方法如图

22. Active Neural SLAM

https://github.com/devendrachaplot/Neural-SLAM

方法如图

推荐阅读:

吐血整理|3D视觉系统化学习路线

那些精贵的3D视觉系统学习资源总结(附书籍、网址与视频教程)

超全的3D视觉数据集汇总

大盘点|6D姿态估计算法汇总(上)

大盘点|6D姿态估计算法汇总(下)

机器人抓取汇总|涉及目标检测、分割、姿态识别、抓取点检测、路径规划

汇总|3D点云目标检测算法

汇总|3D人脸重建算法

那些年,我们一起刷过的计算机视觉比赛

总结|深度学习实现缺陷检测

深度学习在3-D环境重建中的应用

汇总|医学图像分析领域论文

大盘点|OCR算法汇总

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会(ICRA/IROS/ROBIO/CVPR/ICCV/ECCV等)、顶刊(IJCV/TPAMI/TIP等)、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近1000+星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

### 安装和配置 DeepVO 的步骤 #### 准备环境 为了在 Ubuntu 18.04 上成功安装并配置 DeepVO,需要确保操作系统已经更新至最新状态。这可以通过以下命令完成: ```bash sudo apt-get update && sudo apt-get upgrade -y ``` #### 安装依赖库 DeepVO 需要一些特定的 Python 库和其他软件包来支持其功能。这些可以使用 `pip` 和 APT 来安装。 对于 Python 包管理工具 pip 及其他必要的Python库: ```bash sudo apt install python3-pip pip3 install numpy opencv-python h5py tensorflow matplotlib scikit-image ``` 针对 C++ 编译所需的一些基础构建工具以及 Git 版本控制系统也需要被预先准备好: ```bash sudo apt install build-essential cmake git ``` 另外,根据之前遇到过的类似问题,在某些情况下可能还需要额外安装图像处理相关的库文件[^3]: ```bash sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main" sudo apt update sudo apt install libjasper1 libjasper-dev ``` #### 获取源码 通过 GitHub 下载最新的 DeepVO 源代码副本。假设读者已经有了 Git 已经正确安装,则可以直接克隆仓库: ```bash git clone https://github.com/uzh-rpg/rpg_deepvo.git ~/deepvo cd ~/deepvo ``` #### 构建项目 如果 DeepVO 提供了 Makefile 或者 CMakeLists.txt 文件用于简化编译流程的话,那么可以根据官方文档指示来进行本地化调整之后尝试编译整个工程。通常来说,CMake 是更常见的选择之一: ```bash mkdir build && cd build cmake .. make -j$(nproc) ``` #### 进一步配置 按照项目的 README.md 中给出的具体指导进一步定制环境变量、路径设置等细节部分。这部分内容高度依赖于具体的实现版本和个人需求,因此强烈建议仔细阅读作者提供的说明文档。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值