一文详解立体匹配

作者丨cc.fy@知乎

来源丨https://zhuanlan.zhihu.com/p/458589977

编辑丨3D视觉工坊

双目匹配

在双目匹配的范畴里,本次内容主要局限在以下两个小的部分:

* SGM(经典) 原理解析
* comparation with monodepth

SGM

半全局匹配算法(SGM)是实时立体视觉里最流行的一个算法,已经大规模的在很多产品里得到了应用。其最早由H. Hirschmuller 在2005年发表于CVPR的文章中被提出 (Accurate and efficient stereo processing by semi-global matching and mutual information)

立体匹配算法在深度学习算法强势来袭之前,可以分为3大流派,包括局部派(SAD, SSD, NCC, Census-Transform, Mutual Information ...),全局派 (Graph Cut, Belief Propagation, Dynamic Programming ...), 以及半全局派 (SGM). SGM是半全局领域的代表之作,相对于局部派的简单粗暴,SGM更加优雅复杂,同时也没有全局派那么time-consuming (https://blog.csdn.net/rs_lys/?type=blog)

opencv 接口

cv::Ptr<cv::StereoSGBM> sgbm = cv::StereoSGBM::create(minDisparity, numDisparity, SADWindowSize, p1, p2, diso12MaxDiff,preFilterCap, uniqueRatio, speckleWindowSize, speckleRange, fullDp);
cv::Mat disparity_sgbm;
sgbm->compute(frame->left, frame->right, disparity_sgbm);
disparity_sgbm.convertTo(frame->disparity, CV_32F, 1.0 / 16.0f);
  • 参数含义解释 (https://docs.opencv.org/):
    1. minDisparity: 最小视差
    2. numDisparity: 视差个数(64 / 96 / 128 / 256 ...)
    3. SADWindowSize: 灰度相关时的窗口大小 (3 / 5 / 7 ...)
    4. p1, p2, 平滑性惩罚系数, 下文会介绍详细含义
    5. diso12MaxDiff 左右视差检查中允许的最大差异
    6. preFilterCap 预滤波图像像素的截断值 (下文中未用到),主要是图像预处理的操作,用来排除噪声干扰,提高边界的可区分性
    7. uniqueRatio 唯一性比值 (ratio test)
    8. speckleWindowSize 平滑视差区域的最大尺寸 (过滤一些斑点噪声)
    9. speckleRange 连接组件(斑点)内的最大视差变化

样例双目输入与输出

  • INPUT

5635fc1aa3b484ca2bd54a333d4b7453.png

left.png

f73e75ea5434e53b5bf37d643a41a724.png

right.png

  • OUTPUT

e30701d4d9b2b8b0e2e482a78fdd97f9.png

gray-scale show

4f5af6198c8fe55484692d0e4deceec3.png

color-scale show

可以看到有比较多的空洞和视差不连续的地方,正常的流程中还包括一步视差图滤波后处理(weighted least square filtering)

wls_filter = createDisparityWLSFilter(left_matcher);
wls_filter->filter(left_disp,left,filtered_disp,right_disp);

应用滤波之后:

c34b31d6471cf5917e3a767602ef5f6b.png

Reference: "Fast Global Image Smoothing Based on Weighted Least Squares", 大意是使用加权最小二乘算法进行优化,使得图像全局平滑的同时能够进行边缘的保持, 与双边滤波的整体功能相近, 可以看到在经过后处理后,视差图更加平滑,轮廓更加清晰。

利用开源的monodepth,不加任何参数修改的进行训练,然后推断上面图片对应的深度结果(https://github.com/OniroAI/MonoDepth-PyTorch):

24bd098f26ea211a0298083cd654a49c.png

monodepth

从上图中可以看出,在整体表现上,深度学习方法要优于传统方法(The overall performance outperforms by a larger marjin then traditional SGM method)。

SGM整个算法流程

1. Census-Transform 将原始图像转换为census图像,为了便于匹配代价体计算
2. Compute-Cost 通过两幅census图像进行初始的匹配成本计算
3. Cost-Aggregation 代价体聚合, 'key step'
4. Compute-Disparity 基于聚合后的代价体进行每个像素的视差值计算
5. LR-Check 左右视差一致性检查 (optional)
6. Remove-Sparkles 零散的斑点移除(optional)
7. Fill-Holes 空洞填充(optional)
8. Middle-Filter 中值滤波去噪平滑

其中1-4是基本步骤, 5-8为视差优化步骤

分别对每一步进行阐述:

1.census transform

H 老爷子最早的匹配代价选择的是MI(互信息),但相对于census-transform其计算效率比较低,所以主流方式变成了census变换. 所谓census image就是通过census-transform将原始图像逐像素变换得到的,每个像素的census值是明暗相对关系比较的一个比特串。ok, 以一个例子简单说明,加入选择的census的窗口是3*3, 有这样的一个小的image patch:

34a2cb392ddd6fba6f4ed612fb4f01d5.png

那中间像素5的census值为(110100101), 这个二进制比特串所代表的十进制数字421就是对应的census image的像素值. 所有经过census变换后可以分别得到左图的census image和右图的census image ,reference: https://www.cnblogs.com/riddick/p/7295581.html。

2. compute cost 匹配代价成本计算

这一步的过程主要是为了构建初始代价立方体,注意是三维的立方体

print(cost_init_.shape)
    [D, H, W]

其中D为disparity range, H为图像高度,W为图像宽度,ok, 现在的输入是census_left, 一个二维矩阵, census_right, 一个二维矩阵,想要的输出是cost_init, 一个三维矩阵, 如何构造,不失一般性的公式如下:

32812868a08ff1f4f38efb6ea7944893.png

计算当前像素在每个视差下的汉明距离作为度量,这里汉明距离的计算有个面试点分享给有需要的同学:

int SGMUtils::hamming_dist(const unsigned int census_x, const unsigned int census_y){
      int dist = 0;
      int val = census_x ^ census_y;
      while(val) {
        dist++;
        val &= (val - 1);
      }
      return dist;
    }
b4093929c205775680174c688eaebac9.png

代价立方体

横方向代表图像列,纵方向代表图像行,朝里的方向代表深度范围, 当代价体构造好之后,如果不进行关键的代价聚合, 也可以进行视差计算, 这里先跳过代价聚合,直接基于代价体进行视差计算。

4. compute-disparity

视差计算的方法很直观,对于代价体中的每个像素,在视差方向进行遍历,当前像素的视差满足对应的代价最小这一原则,三重循环过后,可以生成相应的视差图,也就是所谓的WTA(winner take all)准则。经过上面简单的几步, 可以获得如下的结果,来自明德学院的经典的左右样图:

51d0212fb5835d17d287858236d943e3.png b9115d72ae334042765bd5e47d0ea770.png 05caf2a86237b903970c835321803f62.png

3. 代价聚合

现在讨论下最关键的代价聚合步骤,这一步是sgm的灵魂,先看下效果:

1b2b40f67e92adf22b23170e8d4cc723.png

目前常用的代价聚合有4path聚合和8path聚合, 4路聚合包括从上到下, 从下到上, 从左往右, 从右往左, 8路聚合增加了45度方向和135度方向的聚合路径,路径聚合的目的就是不仅考虑局部的代价信息, 还要加入全局的平滑信息,只是用多个方向一维的聚合来对二维进行近似,精度相似,效率大幅度提升。以四路聚合为例,会分别得到四个聚合的代价立方体,将其相加得到最终的代价立方体:

for(sint32 i =0;i<size;i++) {
    	cost_aggr_[i] = cost_aggr_1_[i] + cost_aggr_2_[i] + cost_aggr_3_[i] + cost_aggr_4_[i];
    	if (option_.num_paths == 8) {
            cost_aggr_[i] += cost_aggr_5_[i] + cost_aggr_6_[i] + cost_aggr_7_[i] + cost_aggr_8_[i];
        }
    }

这里的size = width * height * disparity_range,以1路聚合,方向从左到右为例,看看如何得到其对应的代价立方体,代价立方体某一元素的计算公式:

904c95712712fbd14f60e5696570c8f4.png

其中p代表像素位置, d代表视差值, r是移动的路径,在当前例子中为从左到右,所以当前的Lr 为代码中的cost_aggr_1_, 代表聚合后的代价立方体,C为初始代价立方体, 公式的含义翻译成中文就是:

聚合后的代价立方体中像素p,视差d位置处的值 = 这个位置的初始代价值 + min(L1, L2, L3, L4) - L4

其中:
1. L1 代表当前立方体像素p-r处,视差d位置处的值,在从左到右的例子中则代表当前像素左侧的像素

2. L2 代表同样的左侧像素, 但视差为d-1位置处的代价值, 再加上p1惩罚项 (小小的对视差变化1进行惩罚)

3. L3 代表同样的左侧像素, 视差为d+1位置处的代价值,再加上p1惩罚项 (小小的对视差变化1进行惩罚)

4. L4 代表同样的当前像素的左侧像素,所有视差位置(disparity channel)中的代价最小值, 再加上p2惩罚项 (视差变化较大, 对应大一点的惩罚)

其中:

c3495ca5867d8fe259a6b4f2451e2254.png

灰度变化越大,相应的惩罚会越小, 为什么呢? 在物体的边界处,深度会发生很大变化,对应的视差也会发生很大变化,这时候的惩罚应该要小一点,所以要除以灰度的变化值来抑制惩罚项。这样设计的聚合代价不仅包括了原始匹配代价,也包括了视差变化(平滑项的代价) 。

61dfb7f223bb66e36284cf6d07c11fde.png

经过上面的一通操作,可以得到最终想要的聚合代价立方体,然后基于代价立方体再进行后面的最优视差计算等。说完了代价聚合的整个过程,再看看理论上为何要做这个?与全局算法相似,sgm希望能做到全局最优,意味着希望当每个像素的视差值确定之后,整体上的能量函数达到最优

8d3226e159398f1c03d468fd2e901cf8.png其中第一项是匹配代价能量,第二项是表面连续性的平滑约束,所以核心问题就是如何求解这个二维最优问题,SGM没有直接求解,采用了单方向聚合一维近似的方法求解,也可以理解为一种一维的动态规划. 只经过从左到右的一路聚合,形成的视差图如下:

bb2a5e5c221e73383b31e7dc5a01b24d.png

一路聚合.png

只作四路聚合后的视差图:

7ab21ed2e0fac0177cc80c41d85e9e1f.png

四路聚合.png

相比于不进行代价聚合,可以看到聚合这一灵魂一步的巨大作用. 一般来说,追求效率的话四路就足够了,若希望能够更好的效果,则可以选择8路聚合。可以看到经过聚合后,已经有了基本的样子,后续的所有操作都是对聚合后的视差图进行优化处理,优化处理中的很多步骤都可以根据实际情况进行合理的取舍. OK, 现在可以进入繁杂细碎的视差优化处理阶段。

备注:感谢微信公众号「3D视觉工坊」整理。

5 -- 8 视差优化

视差优化的目的:提高视差精度, 剔除错误视差, 使得视差值精确, 可靠。同时要保持左右一致性和唯一性。加入视差图的中值滤波可以去掉视差噪声, 采用双边滤波也可以, 可以同时保持边缘的精度, 但效率稍低。

·子像素拟合 -- 3个点 (x1, y1), (x2, y2), (x3, y3)抛物线拟合,求最小值或最大值

·左右一致性检查 -- LR check, 左右影像同名像素的视差应该一致, 若二者的差大于一定的阈值,则将这一像素的视差置为无效值。左右一致性检查的图形含义为:

fa471857a50f442cfb64def0ce96785d.png

下图为monodepth中的左右一致性损失,不同于SGM中同名点像素距离损失,monodepth等深度学习方法采用的是根据右目图像和左目视差生成虚拟左目,和真实的左目构造灰度域(appearence)上的loss,类似于slam中的直接法中的光度误差。

46330bcfff87215f4b11ddaa640fcd86.png

monodepth-lr-check.png

问题来了,右视差图如何生成?

1.通过左影像聚合代价立方体生成右影像聚合代价立方体

17c0fac6a22e3c8eb3f8a07639cf768d.png

2. 根据右影像聚合代价立方体生成右影像视差图, 如步骤4

唯一性约束(ratio test)

ratio = best_score / second_score,如果唯一性没有那么的显著,则将当前视差值置为无效值,这也是特征点匹配中常用的一种鲁棒化策略, 其对应的图形含义为:

9ecc1560c1c026cc28e1cf021ecf40ae.png

小连通区域剔除

存在一些小的连通域,与物体的整体视差很不协调,这样的连通域,一般的滤波又很难弄掉它,所以使用一种区域跟踪的方法,寻找灰度变化在一定范围内的区域,这样的区域面积如果小于一定的阈值,则将区域内的所有像素的视差置为无效值。method: 深度优先遍历,寻找连通区域 (DFS)

中值滤波

去掉不合群的值 (middle filter)

SGM和MonoDepth等深度学习方法的比较

f204c3bf52ded34d7f5ac3a900c766ee.png

loss项总共有3项, 第一项appearance matching loss:

2cacb66d1b0b95a3960756d8e481998e.png

光度误差 + 结构相似度误差,本质上和sgm中汉明距离的匹配代价是等效的。但表达能力上应该更强一些。

第二项Disparity Smooth Loss:

0e61d62093ec022a7c72148de2b13162.png

从公式中可以定性的看出 平滑性loss与视差的变化成正比,与图像的梯度成指数反比,公式所阐述的现实物理含义是不希望在平坦区域视差会有大的变化,但又不能压制在物体边界区域视差应该有较大的突变这样一个事实,sgm中的灵魂一步“代价聚合”不就做的是这样一件事情么?

第三项Left-Right Disparity Consistency Loss:

a045f9998c7be476c2292103c8ed045a.png

sgm中的左右一致性检查在monodepth里面得到的应用。看了上面的几个技术点的比较,是否觉得所谓的monodepth也只是sgm技术集中的子集,在深度学习的背景下,采用各种方式对sgm中的东西进行包装,使其能够运行在学习的范式之下,从而能够以巨量参数的形式对深度进行估计。借助于深度学习强大的表达能力,视差估计的精度显著提升。但不可否认,深度学习方法可能会存在一些泛化性问题。

展望

同时monodepth有很多sgm中的东西没有包装,是否有进一步发展的可能?同时我们也可以看到,推出monodepth2的组织nianticlabs(https://github.com/nianticlabs)去年也推出了新的改进版本,depth hints,(https://arxiv.org/pdf/1909.09051.pdf),通过在训练过程中融合sgm的监督信息,更好的深度估计结果:

c54981e2dc56f5be6e4c5b88766906bf.png 4f94e98eeeb64e38cb4f09499349b874.png

本文仅做学术分享,如有侵权,请联系删文。

3D视觉精品课程推荐:

1.面向自动驾驶领域的多传感器数据融合技术

2.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
3.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
4.国内首个面向工业级实战的点云处理课程
5.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
6.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
7.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
8.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

9.从零搭建一套结构光3D重建系统[理论+源码+实践]

10.单目深度估计方法:算法梳理与代码实现

11.自动驾驶中的深度学习模型部署实战

12.相机模型与标定(单目+双目+鱼眼)

13.重磅!四旋翼飞行器:算法与实战

14.ROS2从入门到精通:理论与实战

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

aa87a78cf05c66cadf4d3b0f5cc98e3d.png

▲长按加微信群或投稿

894d44c3a1542f2d10faad387ee01faa.png

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列三维点云系列结构光系列手眼标定相机标定激光/视觉SLAM自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近4000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

172ddd360cdb790a4942c29a9c9155a1.png

 圈里有高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

### 数据治理框架的概念 数据治理框架是一套结构化的方法论,用于指导企业在管理和利用数据资产的过程中如何有效地进行决策和支持操作。该框架不仅涵盖了技术和工具的选择,还包括政策制定、标准设定以及流程设计等方面的内容[^3]。 ### 数据治理框架的主要构成要素 #### 1. 利益干系人的定义与角色分配 在DGI数据治理框架中,明确了三个主要的利益干系人群体:数据利益相关者、数据治理办公室和数据专员。这些群体共同构成了数据治理的核心团队,在整个过程中扮演着不同的角色并承担相应的责任[^1]。 - **数据利益相关者**:通常指那些对企业内部或外部使用的各类数据有直接影响的人士,他们可能来自业务部门或是信息技术领域。 - **数据治理办公室**:作为协调中心负责监督整体策略执行情况,并确保各个层面遵循既定方针;同时还要处理日常运营事务如培训教育等。 - **数据专员**:具体落实各项措施的技术人员,专注于特定项目或任务上的细节工作。 #### 2. 职责分工说明 对于上述提到的不同参与者之间的协作方式及各自的任务边界进行了详细的阐述。这有助于避免重复劳动的同时也能够提高工作效率,使得每一个人都清楚自己在整个体系内的位置及其所肩负的责任所在。 #### 3. 知识领域的划分 依据DAMA-DMBOK框架,数据管理被细分为多个相互关联却又独立存在的知识域。这种分类方法可以帮助组织更好地理解复杂的信息生态系统,并针对不同方面采取针对性更强的解决方案。例如,“元数据管理”、“文档记录”、“安全保护”等领域都属于这一范畴内的重要组成部分[^2]。 ```python # Python代码示例展示了一个简单的类来表示数据治理框架中的角色 class DataGovernanceRole: def __init__(self, name, responsibilities): self.name = name self.responsibilities = responsibilities def describe_role(self): print(f"The role of {self.name} includes:") for responsibility in self.responsibilities: print(f"- {responsibility}") data_stakeholder = DataGovernanceRole( "Data Stakeholders", ["Influencing data usage within or outside the organization"] ) governance_office = DataGovernanceRole( "Data Governance Office", [ "Overseeing strategy implementation", "Ensuring compliance with policies" ] ) data_specialist = DataGovernanceRole( "Data Specialists", ["Implementing specific measures on projects"] ) data_stakeholder.describe_role() governance_office.describe_role() data_specialist.describe_role() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值