一文详解双目相机标定理论

本文详述了双目相机的标定过程,重点在于狭义的双目标定,即确定两台相机间的相对位置关系。通过双目标定,可以优化相机的光轴平行性,提高后续立体匹配的效率。文章回顾了单目标定理论,然后推导了双目标定的公式,介绍了Bouguet极线校正方法,以实现相机光轴平行和图像的最佳重叠。
摘要由CSDN通过智能技术生成

01 前言

双目相机标定,从广义上讲,其实它包含两个部分内容:

  • 两台相机各自误差的标定(单目标定)

  • 两台相机之间相互位置的标定(狭义,双目标定)

在这里我们所说的双目标定是狭义的,讲解理论的时候仅指两台相机之间相互位置的标定,在代码实践的时候,我们才说完整的双目标定。

首先来思考一个问题:为什么要进行双目标定?

这是因为在许多三维重建算法中,我们都要知道两台相机之间的相对位置关系,这样才能进行距离计算。

双目标定前后,双目模型对比如下图所示:

图1 标定模型 [1]

其中:

  • 基线:两个光心的连线称为基线;

  • 极平面:物点(空间点M)与两个光心的连线构成的平面称为极平面;

  • 极线:极平面与成像平面的交线

  • 极点:极线的一端,基线与像平面的交点

  • 像点:极线的一端,光心与物点连线与像平面的交点;

可以看出:

  • 校正前,相机的光心不是相互平行的

  • 校正后,极点在无穷远处,两个相机的光轴平行,像点在左右图像上的高度一致

标定+校正后图片:

图1 立体校正后左右相机图像发生一定扭曲 [2]

这样的好处是:比如后续的立体匹配时,只需在同一行上搜索左右像平面的匹配点即可,能使效率大大提高。

注:可以看出来,最重要的,我们要知道右相机相对于左相机的位姿关系,那我们才可以做校正!

02 单目理论回顾

先来回顾下单目标定理论,理想的单目相机模型可以简化为&#x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值