CVPR 2022 | CrossPoint:3D点云理解的自监督跨模态对比学习

本文介绍了CrossPoint,一种用于3D点云理解的自监督跨模态对比学习方法,旨在解决点云数据标注困难的问题。通过最大化点云和2D渲染图像之间的对应一致性,同时保持点云的变换不变性,CrossPoint在3D目标分类和分割等任务上表现出优越性能。实验结果表明,该方法在多个下游任务中优于其他无监督学习方法,且不受特定增强偏见影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding

代码链接:https://github.com/MohamedAfham/CrossPoint

文章链接:https://arxiv.org/abs/2203.00680

作者笔名:HT

摘 要

由于点云的不规则结构,用于各种任务(例如 3D对象的分类、分割和检测)的大规模点云数据集的人工标注通常是很费力的。无需任何人工标记的自监督学习,是解决此问题的一种很有前景的方法。在现实世界中,我们观察到人类能够将从2D图像中学习到的视觉概念映射到3D世界,进而辅助理解。受到这种见解的启发,我们提出了CrossPoint,这是一种简单的跨模态对比学习方法,用于学习可迁移的3D点云表示。它通过最大化点云和不变空间中相应渲染的 2D 图像之间的一致性,来实现3D-2D对象间的对应,同时鼓励点云模态中的变换不变性。我们的联合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值