CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding
代码链接:https://github.com/MohamedAfham/CrossPoint
文章链接:https://arxiv.org/abs/2203.00680
作者笔名:HT
摘 要
由于点云的不规则结构,用于各种任务(例如 3D对象的分类、分割和检测)的大规模点云数据集的人工标注通常是很费力的。无需任何人工标记的自监督学习,是解决此问题的一种很有前景的方法。在现实世界中,我们观察到人类能够将从2D图像中学习到的视觉概念映射到3D世界,进而辅助理解。受到这种见解的启发,我们提出了CrossPoint,这是一种简单的跨模态对比学习方法,用于学习可迁移的3D点云表示。它通过最大化点云和不变空间中相应渲染的 2D 图像之间的一致性,来实现3D-2D对象间的对应,同时鼓励点云模态中的变换不变性。我们的联合