矩阵线性变换后 协方差矩阵的关系

本文解释了均值为0的矩阵XXX经过变换WWW后,协方差矩阵Σ如何变为Σ^=W^TΣW。通过一维和多维例子,以及数学推导,说明了协方差矩阵的乘法性质,并强调了均值0前提的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

以向量横向排列(一行一个向量)举例,
对于各个向量均值为0的矩阵 X X X来说,其协方差矩阵标记为 Σ \Sigma Σ,进行某一变换 W W W,结果是 X ^ = X W \hat{X}=XW X^=XW,变换后的协方差矩阵标记为 Σ ^ \hat\Sigma Σ^,问 Σ \Sigma Σ Σ ^ \hat\Sigma Σ^的关系?

解答/记忆方法

对于均值为0一维的数据来说,对每一个数字都乘以系数 a a a,那么其方差会变为原来的 a 2 a^2 a2倍。
正式一点的表达是均值0的一维分布 Y Y Y的方差 μ \mu μ,与变换后的分布 Y ^ = a Y \hat{Y}=aY Y^=aY的方差 μ ^ \hat{\mu} μ^的关系是 μ ^ = a 2 μ \hat{\mu}=a^2\mu μ^=a2μ

推广到多维,多维数据的变换用了 W W W来表示,但是方差也是 W W W的“平方倍”。但是线代中左乘不等于右乘,线代中的结论是 Σ ^ = W T Σ W \hat{\Sigma}=W^T\Sigma W Σ^=WTΣW
其实是非常相似的,假设左乘和右乘等价,那么也是“ Σ ^ = W 2 Σ \hat{\Sigma}=W^2\Sigma Σ^=W2Σ(不存在这个写法,理解为主)。
另一种从矩阵单个元素的理解方法, W T W W^TW WTW运算一下,其实就是每个维度都分配一个平方值,中间加入 Σ \Sigma Σ矩阵,相当于给矩阵中的每个维度的方差都分配了一个平方值,这与一维的思想是一致的。

数学证明

显然上面的结论只是为了方便记忆。数学推一下其实也挺简单:
对于各个向量均值0的矩阵 X X X,其协方差矩阵 Σ = 1 m X T X \Sigma=\frac1mX^TX Σ=m1XTX X X X变换后变成 X W XW XW,其协方差矩阵就是 Σ ^ = 1 m ( X W ) T X W \hat{\Sigma}=\frac1m(XW)^TXW Σ^=m1(XW)TXW,问他们俩的关系?稍微看下就知道 Σ ^ = 1 m ( X W ) T X W = 1 m W T X T X W \hat{\Sigma}=\frac1m(XW)^TXW=\frac1mW^TX^TXW Σ^=m1(XW)TXW=m1WTXTXW
Σ = 1 m X T X \Sigma=\frac1mX^TX Σ=m1XTX
所以 Σ ^ = W T Σ W \hat{\Sigma}=W^T\Sigma W Σ^=WTΣW

一般应用

可能你也发现了,上述结论成立的前提,都是均值为0,所以对矩阵进行变换时,不会直接对 X X X,而是对减掉了各个分量的平均值后的 X X X,这样才会有以上性质。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值