信息矩阵、hessian矩阵与协方差矩阵


本节探讨信息矩阵、hessian矩阵与协方差矩阵的关系,阐明边缘化的原理。
一个简单的示例,如下:
来自 David Mackay. “The humble Gaussian distribution”. In: (2006). 以及手写vio第四节。
在这里插入图片描述
箭头代表了约束方程(或可以理解为观测方程):
z 1 : z 2 : z 3 : x 2 = v 2   x 1 = w 1 x 2 + v 1   x 3 = w 3 x 2 + v 3 \begin{array}{} {{z_1}:}\\ {{z_2}:}\\ {{z_3}:} \end{array}\begin{array}{} {{x_2} = {v_2}}\\ {\,{x_1} = {w_1}{x_2} + {v_1}}\\ {\,{x_3} = {w_3}{x_2} + {v_3}} \end{array} z1:z2:z3:x2=v2x1=w1x2+v1x3=w3x2+v3

其中, v i v_i vi 相互独立,且各自服从零均值,协方差为 σ i 2 \sigma_i^2 σi2的高斯分布。

协方差矩阵

协方差计算公式:
C o v ( X , Y ) = E [ ( X − E [ X ] ) ∗ ( Y − E [ Y ] ) = E [ X Y ] − 2 E [ X ] E [ Y ] + E [ X ] E [ Y ] = E [ X Y ] − E [ X ] E [ Y ] \begin{aligned} Cov(X,Y) &= E[(X - E[X]) * (Y - E[Y])\\ &= E[XY] - 2E[X]E[Y] + E[X]E[Y]\\ &= E[XY] - E[X]E[Y] \end{aligned} Cov(X,Y)=E[(XE[X])(YE[Y])=E[XY]2E[X]E[Y]+E[X]E[Y]=E[XY]E[X]E[Y]

或: C o v ( X , Y ) = E [ ( X − μ x ) ( Y − μ y ) ] Cov(X,Y) = E[(X - {\mu _x})(Y - {\mu _y})] Cov(X,Y)=E[(Xμx)(Yμy)]

计算 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3之间的协方差矩阵:
Σ 11 = E ( x 1 x 1 ) = E ( ( w 1 v 2 + v 1 ) ( w 1 v 2 + v 1 ) ) = w 1 2 E ( v 2 2 ) + 2 w 1 E ( v 1 v 2 ) + E ( v 1 2 ) = w 1 2 σ 2 2 + σ 1 2 Σ 22 = σ 2 2 , Σ 33 = w 3 2 σ 2 2 + σ 3 2 Σ 12 = E ( x 1 x 2 ) = E ( ( w 1 v 2 + v 1 ) v 2 ) = w 1 σ 2 2 Σ 13 = E ( ( w 1 v 2 + v 1 ) ( w 3 v 2 + v 3 ) ) = w 1 w 3 σ 2 2 \begin{aligned} {{\rm{\Sigma }}_{11}} &= E({x_1}{x_1}) = E(({w_1}{v_2} + {v_1})({w_1}{v_2} + {v_1}))\\ &= w_1^2E(v_2^2) + 2{w_1}E({v_1}{v_2}) + E(v_1^2)\\ &= w_1^2\sigma _2^2 + \sigma _1^2\\ {{\rm{\Sigma }}_{22}} &= \sigma _2^2,\quad {{\rm{\Sigma }}_{33}} = w_3^2\sigma _2^2 + \sigma _3^2\\ {{\rm{\Sigma }}_{12}} &= E({x_1}{x_2}) = E(({w_1}{v_2} + {v_1}){v_2}) = {w_1}\sigma _2^2\\ {{\rm{\Sigma }}_{13}} &= E(({w_1}{v_2} + {v_1})({w_3}{v_2} + {v_3})) = {w_1}{w_3}\sigma _2^2 \end{aligned} Σ11Σ22Σ12Σ13=E(x1x1)=E((w1v2+v1)(w1v2+v1))=w12E(v22)+2w1E(v1v2)+E(v12)=w12σ22+σ12=σ22,Σ33=w32σ22+σ32=E(x1x2)=E((w1v2+v1)v2)=w1σ22=E((w1v2+v1)(w3v2+v3))=w1w3σ22

最后得到协方差矩阵:
Σ = [ w 1 2 σ 2 2 + σ 1 2 w 1 σ 2 2 w 1 w 3 σ 2 2 w 1 σ 2 2 σ 2 2 w 3 σ 2 2 w 1 w 3 σ 2 2 w 3 σ 2 2 w 3 2 σ 2 2 + σ 3 2 ] \Sigma = \left[ {\begin{array}{} {w_1^2\sigma _2^2 + \sigma _1^2}&{{w_1}\sigma _2^2}&{{w_1}{w_3}\sigma _2^2}\\ {{w_1}\sigma _2^2}&{\sigma _2^2}&{{w_3}\sigma _2^2}\\ {{w_1}{w_3}\sigma _2^2}&{{w_3}\sigma _2^2}&{w_3^2\sigma _2^2 + \sigma _3^2} \end{array}} \right] Σ= w12σ22+σ12w1σ22w1w3σ22w1σ22σ22w3σ22w1w3σ22w3σ22w32σ22+σ32

联合概率密度

p ( x 1 , x 2 , x 3 ∣ z 1 , z 2 , z 3 ) = 1 C exp ⁡ ( − x 2 2 2 σ 2 2 − ( x 1 − w 1 x 2 ) 2 2 σ 1 2 − ( x 3 − w 3 x 2 ) 2 2 σ 3 2 ) = 1 C exp ⁡ ( − x 2 2 [ 1 2 σ 2 2 + w 1 2 2 σ 1 2 − w 3 2 2 σ 3 2 ] − x 1 2 1 2 σ 1 2 + 2 x 1 x 2 w 1 2 σ 1 2 − x 3 2 1 2 σ 3 2 + 2 x 3 x 2 w 3 2 σ 3 2 ) = 1 C exp ⁡ ( − 1 2 [ x 1 x 2 x 3 ] [ 1 σ 1 2 − w 1 σ 1 2 0 − w 1 σ 1 2 w 1 2 σ 1 2 + 1 σ 2 2 + w 3 2 σ 3 2 − w 3 σ 3 2 0 − w 3 σ 3 2 1 σ 3 2 ] [ x 1 x 2 x 3 ] ) = 1 C exp ⁡ ( − 1 2 [ x 1 x 2 x 3 ] Σ − 1 [ x 1 x 2 x 3 ] ) \begin{aligned}{} p({x_1},{x_2},{x_3}&|{z_1},{z_2},{z_3})\\ &= \frac{1}{C}\exp ( - \frac{{x_2^2}}{{2\sigma _2^2}} - \frac{{{{({x_1} - {w_1}{x_2})}^2}}}{{2\sigma _1^2}} - \frac{{{{({x_3} - {w_3}{x_2})}^2}}}{{2\sigma _3^2}})\\ \\ &= \frac{1}{C}\exp ( - x_2^2[\frac{1}{{2\sigma _2^2}} + \frac{{w_1^2}}{{2\sigma _1^2}} - \frac{{w_3^2}}{{2\sigma _3^2}}] - x_1^2\frac{1}{{2\sigma _1^2}} + 2{x_1}{x_2}\frac{{{w_1}}}{{2\sigma _1^2}} - x_3^2\frac{1}{{2\sigma _3^2}} + 2{x_3}{x_2}\frac{{{w_3}}}{{2\sigma _3^2}})\\ \\ & = \frac{1}{C}\exp ( - \frac{1}{2}\left[ {\begin{array}{} {{x_1}}&{{x_2}}&{{x_3}} \end{array}} \right]\left[ {\begin{array}{} {\frac{1}{{\sigma _1^2}}}&{ - \frac{{{w_1}}}{{\sigma _1^2}}}&0\\ { - \frac{{{w_1}}}{{\sigma _1^2}}}&{\frac{{w_1^2}}{{\sigma _1^2}} + \frac{1}{{\sigma _2^2}} + \frac{{w_3^2}}{{\sigma _3^2}}}&{ - \frac{{{w_3}}}{{\sigma _3^2}}}\\ 0&{ - \frac{{{w_3}}}{{\sigma _3^2}}}&{\frac{1}{{\sigma _3^2}}} \end{array}} \right]\left[ {\begin{array}{} {{x_1}}\\ {{x_2}}\\ {{x_3}} \end{array}} \right])\\ &= \frac{1}{C}\exp ( - \frac{1}{2}\left[ {\begin{array}{} {{x_1}}&{{x_2}}&{{x_3}} \end{array}} \right]{\Sigma ^{ - 1}}\left[ {\begin{array}{} {{x_1}}\\ {{x_2}}\\ {{x_3}} \end{array}} \right]) \end{aligned} p(x1,x2,x3z1,z2,z3)=C1exp(2σ22x222σ12(x1w1x2)22σ32(x3w3x2)2)=C1exp(x22[2σ221+2σ12w122σ32w32]x122σ121+2x1x22σ12w1x322σ321+2x3x22σ32w3)=C1exp(21[x1x2x3] σ121σ12w10σ12w1σ12w12+σ221+σ32w32σ32w30σ32w3σ321 x1x2x3 )=C1exp(21[x1x2x3]Σ1 x1x2x3 )

从而我们可以得到协方差的逆矩阵,即信息矩阵:
Σ − 1 = [ 1 σ 1 2 − w 1 σ 1 2 0 − w 1 σ 1 2 w 1 2 σ 1 2 + 1 σ 2 2 + w 3 2 σ 3 2 − w 3 σ 3 2 0 − w 3 σ 3 2 1 σ 3 2 ] {\Sigma ^{ - 1}} = \left[ {\begin{array}{} {\frac{1}{{\sigma _1^2}}}&{ - \frac{{{w_1}}}{{\sigma _1^2}}}&0\\ { - \frac{{{w_1}}}{{\sigma _1^2}}}&{\frac{{w_1^2}}{{\sigma _1^2}} + \frac{1}{{\sigma _2^2}} + \frac{{w_3^2}}{{\sigma _3^2}}}&{ - \frac{{{w_3}}}{{\sigma _3^2}}}\\ 0&{ - \frac{{{w_3}}}{{\sigma _3^2}}}&{\frac{1}{{\sigma _3^2}}} \end{array}} \right] Σ1= σ121σ12w10σ12w1σ12w12+σ221+σ32w32σ32w30σ32w3σ321

求最大似然估计: arg ⁡ max ⁡ x 1 , x 2 , x 3 p ( x 1 , x 2 , x 3 ∣ z 1 , z 2 , z 3 ) \mathop {\arg\max }\limits_{{x_1},{x_2},{x_3}} p({x_1},{x_2},{x_3}|{z_1},{z_2},{z_3}) x1,x2,x3argmaxp(x1,x2,x3z1,z2,z3)

可以转化为求
arg ⁡ max ⁡ x 1 , x 2 , x 3 log ⁡ ( p ( x 1 , x 2 , x 3 ∣ z 1 , z 2 , z 3 ) ) ∝ − 1 2 [ x 1 x 2 x 3 ] [ 1 σ 1 2 − w 1 σ 1 2 0 − w 1 σ 1 2 w 1 2 σ 1 2 + 1 σ 2 2 + w 3 2 σ 3 2 − w 3 σ 3 2 0 − w 3 σ 3 2 1 σ 3 2 ] [ x 1 x 2 x 3 ] \mathop {\arg \max }\limits_{{x_1},{x_2},{x_3}} \log (p({x_1},{x_2},{x_3}|{z_1},{z_2},{z_3})) \\\propto - \frac{1}{2}\left[ {\begin{array}{} {{x_1}}&{{x_2}}&{{x_3}} \end{array}} \right]\left[ {\begin{array}{} {\frac{1}{{\sigma _1^2}}}&{ - \frac{{{w_1}}}{{\sigma _1^2}}}&0\\ { - \frac{{{w_1}}}{{\sigma _1^2}}}&{\frac{{w_1^2}}{{\sigma _1^2}} + \frac{1}{{\sigma _2^2}} + \frac{{w_3^2}}{{\sigma _3^2}}}&{ - \frac{{{w_3}}}{{\sigma _3^2}}}\\ 0&{ - \frac{{{w_3}}}{{\sigma _3^2}}}&{\frac{1}{{\sigma _3^2}}} \end{array}} \right]\left[ {\begin{array}{} {{x_1}}\\ {{x_2}}\\ {{x_3}} \end{array}} \right] x1,x2,x3argmaxlog(p(x1,x2,x3z1,z2,z3))21[x1x2x3] σ121σ12w10σ12w1σ12w12+σ221+σ32w32σ32w30σ32w3σ321 x1x2x3

即求: arg ⁡ min ⁡ x 1 , x 2 , x 3 1 2 [ x 1 x 2 x 3 ] Σ − 1 [ x 1 x 2 x 3 ] \mathop {\arg \min }\limits_{{x_1},{x_2},{x_3}} \frac{1}{2}\left[ {\begin{array}{} {{x_1}}&{{x_2}}&{{x_3}} \end{array}} \right]{\Sigma ^{ - 1}}\left[ {\begin{array}{} {{x_1}}\\ {{x_2}}\\ {{x_3}} \end{array}} \right] x1,x2,x3argmin21[x1x2x3]Σ1 x1x2x3

如此我们可以将问题转化为一个最小二乘问题,同时我们看出信息矩阵与协方差的数学意义。

hessian矩阵

根据约束方程创建最小二乘问题:
e = ∑ i = 1 3 ∥ z i ∥ 2 H = ∑ i = 1 3 J z i T J z i = [ − 1 w 1 0 ] [ − 1 w 1 0 ] + [ 0 1 0 ] [ 0 1 0 ] + [ 0 w 3 − 1 ] [ 0 w 3 − 1 ] = [ 1 − w 1 0 − w 1 w 1 2 + 1 + w 3 2 − w 3 0 − w 3 1 ] \begin{aligned}{} e &= \sum \limits_{i = 1}^3 \parallel {z_i}{\parallel _2}\\ H &= \sum \limits_{i = 1}^3 J_{zi}^T{J_{zi}}\\ &= \left[ {\begin{array}{} { - 1}\\ {{w_1}}\\ 0 \end{array}} \right]\left[ {\begin{array}{} { - 1}&{{w_1}}&0 \end{array}} \right] + \left[ {\begin{array}{} 0\\ 1\\ 0 \end{array}} \right]\left[ {\begin{array}{} 0&1&0 \end{array}} \right] + \left[ {\begin{array}{} 0\\ {{w_3}}\\ { - 1} \end{array}} \right]\left[ {\begin{array}{} 0&{{w_3}}&{ - 1} \end{array}} \right]\\ &= \left[ {\begin{array}{} 1&{ - {w_1}}&0\\ { - {w_1}}&{w_1^2 + 1 + w_3^2}&{ - {w_3}}\\ 0&{ - {w_3}}&1 \end{array}} \right] \end{aligned} eH=i=13zi2=i=13JziTJzi= 1w10 [1w10]+ 010 [010]+ 0w31 [0w31]= 1w10w1w12+1+w32w30w31

当我们考虑变量方差 σ i 2 \sigma_i^2 σi2时,问题变为: arg ⁡ min ⁡ x 1 , x 2 , x 3 ∑ i = 1 3 ∥ z i ∥ σ i 2 \mathop {\arg \min }\limits_{{x_1},{x_2},{x_3}} \sum \limits_{i = 1}^3 \parallel {z_i}{\parallel _{\sigma _i^2}} x1,x2,x3argmini=13ziσi2
我们得到加入方差的hessian矩阵,即为信息矩阵:
H = J T [ σ 1 2 0 0 0 σ 2 2 0 0 0 σ 3 2 ] J = ∑ i = 1 3 J z i T σ i 2 J z i = [ 1 σ 1 2 − w 1 σ 1 2 0 − w 1 σ 1 2 w 1 2 σ 1 2 + 1 σ 2 2 + w 3 2 σ 3 2 − w 3 σ 3 2 0 − w 3 σ 3 2 1 σ 3 2 ] \begin{aligned}{} H &= {J^T}\left[ {\begin{array}{} {\sigma _1^2}&0&0\\ 0&{\sigma _2^2}&0\\ 0&0&{\sigma _3^2} \end{array}} \right]J\\ &= \sum \limits_{i = 1}^3 J_{zi}^T\sigma _{\rm{i}}^2{J_{zi}}\\ &= \left[ {\begin{array}{} {\frac{1}{{\sigma _1^2}}}&{ - \frac{{{w_1}}}{{\sigma _1^2}}}&0\\ { - \frac{{{w_1}}}{{\sigma _1^2}}}&{\frac{{w_1^2}}{{\sigma _1^2}} + \frac{1}{{\sigma _2^2}} + \frac{{w_3^2}}{{\sigma _3^2}}}&{ - \frac{{{w_3}}}{{\sigma _3^2}}}\\ 0&{ - \frac{{{w_3}}}{{\sigma _3^2}}}&{\frac{1}{{\sigma _3^2}}} \end{array}} \right] \end{aligned} H=JT σ12000σ22000σ32 J=i=13JziTσi2Jzi= σ121σ12w10σ12w1σ12w12+σ221+σ32w32σ32w30σ32w3σ321

由最大似然得到的最小二乘问题与使用观测约束建立的最小二乘问题等价:

arg ⁡ min ⁡ x 1 , x 2 , x 3 1 2 [ x 1 x 2 x 3 ] Σ − 1 [ x 1 x 2 x 3 ] → arg ⁡ min ⁡ x 1 , x 2 , x 3 ∑ i = 1 3 ∥ z i ∥ σ i 2 \mathop {\arg \min }\limits_{{x_1},{x_2},{x_3}} \frac{1}{2}\left[ {\begin{array}{} {{x_1}}&{{x_2}}&{{x_3}} \end{array}} \right]{\Sigma ^{ - 1}}\left[ {\begin{array}{} {{x_1}}\\ {{x_2}}\\ {{x_3}} \end{array}} \right]\quad \rightarrow \quad \mathop {\arg \min }\limits_{{x_1},{x_2},{x_3}} \sum \limits_{i = 1}^3 \parallel {z_i}{\parallel _{\sigma _i^2}} x1,x2,x3argmin21[x1x2x3]Σ1 x1x2x3 x1,x2,x3argmini=13ziσi2

由此,我们便可以具体看出hessian矩阵与协方差矩阵之间的联系,当我们需要边缘化marginalize一个变量时,可以将信息矩阵求逆转化为相关的协方差矩阵,然后剔除掉变量后,再次求逆得到新的信息矩阵。

marginalize

通过schur补,我们可以将marginalize的过程公式化:
以Marg b为例:需要先将信息矩阵(此例中为 Λ \mathrm{\Lambda} Λ)求逆,得协方差矩阵 Σ \mathrm{\Sigma} Σ,提取与b无关的矩阵A,再对A求逆,即得到marg 后的信息矩阵。
设协方差矩阵如下:

Σ = [ A C T C D ] = [ Σ a a Σ a b Σ b a Σ b b ] {\rm{\Sigma }} = \left[ {\begin{array}{} A&{{C^T}}\\ C&D \end{array}} \right] = \left[ {\begin{array}{} {{\Sigma _{aa}}}&{{\Sigma _{ab}}}\\ {{\Sigma _{ba}}}&{{\Sigma _{bb}}} \end{array}} \right] Σ=[ACCTD]=[ΣaaΣbaΣabΣbb]
信息矩阵如下:
Λ = Σ − 1 = [ Λ a a Λ a b Λ b a Λ b b ] {\rm{\Lambda }} = {{\rm{\Sigma }}^{ - 1}} = \left[ {\begin{array}{} {{{\rm{\Lambda }}_{aa}}}&{{{\rm{\Lambda }}_{ab}}}\\ {{{\rm{\Lambda }}_{ba}}}&{{{\rm{\Lambda }}_{bb}}} \end{array}} \right] Λ=Σ1=[ΛaaΛbaΛabΛbb]
通过schur补,可得:
在这里插入图片描述
即:
Λ p = A − 1 = Σ a a − 1 = Λ a a − Λ a b Λ b b − 1 Λ b a {\Lambda _p} = {A^{ - 1}} = {\rm{\Sigma }}_{aa}^{ - 1} = {{\rm{\Lambda }}_{aa}} - {{\rm{\Lambda }}_{ab}}{{\rm{\Lambda }}_{bb}}^{ - 1}{{\rm{\Lambda }}_{ba}} Λp=A1=Σaa1=ΛaaΛabΛbb1Λba
对应的偏差:
η p = η a − Λ a b Λ b b − 1 η b {\eta _p} = {\eta _a} - {{\rm{\Lambda }}_{ab}}{\rm{\Lambda }}_{bb}^{ - 1}{\eta _b} ηp=ηaΛabΛbb1ηb
若没有marg时,关于a的更新值为: u p d a t e a = Λ a a − 1 ⋅ η a {\rm{updat}}{{\rm{e}}_a}{\rm{ = \Lambda }}_{aa}^{ - 1} \cdot {\eta _a} updatea=Λaa1ηa.
加入marg后,关于a的更新值为:
u p d a t e a = ( Λ a a − Λ a b Λ b b − 1 Λ b a ) − 1 ⋅ ( η a − Λ a b Λ b b − 1 η b ) = Σ a a μ a {\rm{updat}}{{\rm{e}}_a}{\rm{ = }}\left( {{{\rm{\Lambda }}_{aa}} - {{\rm{\Lambda }}_{ab}}{{\rm{\Lambda }}_{bb}}^{ - 1}{{\rm{\Lambda }}_{ba}}} \right){}^{ - 1} \cdot \left( {{\eta _a} - {{\rm{\Lambda }}_{ab}}{\rm{\Lambda }}_{bb}^{ - 1}{\eta _b}} \right) = {\Sigma _{aa}}{\mu _a} updatea=(ΛaaΛabΛbb1Λba)1(ηaΛabΛbb1ηb)=Σaaμa

在这里插入图片描述
详细推导见《手写VIO》第四讲,以及相关博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值