自监督论文阅读笔记 Self-Supervised Deep Learning for Vehicle Detection in High-Resolution Satellite Imagery

本文介绍了一种自监督深度学习方法,用于在未经标注的高分辨率卫星图像中检测车辆。该方法结合形态学车辆检测算法生成训练数据,用于训练CNN,有效应对类别不平衡问题。在0.31米分辨率的Worldview-3卫星图像上测试,展示了在复杂场景中的鲁棒性,特别适用于依赖车辆密度估计的应用。
摘要由CSDN通过智能技术生成

        本文中,展示了一个自监督的深度学习流程,它可以有效地学习 检测车辆,而无需使用任何预先标记的训练数据。该流程使用 形态学车辆检测算法 自动生成卷积神经网络 (CNN) 的训练集。本文使用 0.31 米的多光谱 Worldview-3 卫星图像 在沙特阿拉伯利雅得的一个 混合用途城市社区 测试了这种方法,该图像具有 八个可见光 和 近红外波长波段。该方法通过从 高精度、低召回率的形态模型 生成平衡的训练样本 来训练神经网络 来识别一般的车辆特征,从而 利用 许多车辆检测问题固有的类别不平衡。这种方法建立在广泛适用的图像处理方法之上,经过适当调整,可能会适应各种卫星或航空来源的高分辨率。


        计算机视觉的最新进展推动了城市应用遥感的快速增长。随着 高分辨率卫星和航空图像 的日益普及,车辆检测 在城市规划、资源管理、自然灾害监测和移动建模中变得越来越普遍。目前可用的最准确的目标提取方法 通常依赖于手动标记的数据 来训练完全监督的深度学习模型 [1]。生成合适的数据集 可能既耗时又昂贵,尤其是因为生成高质量的标签可能需要领域专业知识

        随着 可用图像的数量 和 多样性的 不断增长,为不同的感兴趣对象 创建大型手动注释数据集可能会给该领域的 研究人员 和 从业者 带来重大瓶颈。一些研究试图 限制注释数据的使用 [1] 来克服这些挑战。本文提出了一种 完全自监督的方法,该方法 利用 形态算法 和 深度学习 的组合 检测未标记卫星图像中的车辆


        形态学方法 和 图像处理算法 已显示出用于 自动目标检测 的有希望的能力。一些研究人员已经 使用形态学过程 [2] 在高分辨率卫星图像中检测车辆。最近,深度学习方法在车辆检测任务中表现出很高的准确性,最成功的深度学习方法 通​​常利用大规模的手动标记的数据集,例如Cars Overhead with Con-text(COWC) [3]。然而,这些数据集是 针对特定的图像规范

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值