创新点!CNN与LSTM结合,实现更准预测、更快效率、更高性能!

推荐一个能发表高质量论文的好方向:LSTM结合CNN。

LSTM擅长捕捉序列数据中的长期依赖关系,而CNN则擅长提取图像数据的局部特征。通过结合两者的优势,我们可以让模型同时考虑到数据的时序信息和空间信息,减少参数降低过拟合风险,从而提供更精确的预测、更出色的性能以及更高的训练效率。

因此,LSTM结合CNN也是深度学习的一个热门研究方向,在学术界与工业界都有广泛应用。比如在股票预测中,这类结合模型不仅可以捕捉股票市场数据的复杂性,还可以提高预测模型在面对市场波动时的鲁棒性。

本文整理了15种LSTM结合CNN的创新方案,包括引入注意力机制的策略,并简单提炼了可参考的方法以及创新点,希望能给各位的论文添砖加瓦。

论文原文需要的同学看文末

BIDIRECTIONAL CNN-LSTM ARCHITECTURE TO PREDICT CNXIT STOCK PRICES

方法:论文探索应用双向卷积神经网络-长短期记忆网络(CNN-LSTM)架构来预测股票价格,特别关注CNXIT(Nifty IT)股票指数,以研究深度学习技术在捕捉历史股票价格数据中的复杂时间依赖性和空间模式方面的潜力。通过综合文献回顾,介绍Bidirectional CNN-LSTM模型及其数据预处理步骤、模型架构和训练过程。清理和准备CNXIT历史股票价格数据集以确保模型的准确性。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值