简介
本文揭示了转岗AI产品经理的三大隐藏大坑:一是仅停留在"会用"层面而非"应用",无法将AI工具转化为产品设计;二是知识零散不成体系,无法自验真伪;三是缺乏实践项目,空有理论无实战。文章提出解决方案:将使用经验转化为产品设计能力,系统学习并能验证大模型知识,开发RAG客服、内部效率赋能等实际项目。掌握这些要点,可大幅提升转岗成功率,让面试机会不再浪费。
好不容易拿到了面试机会,却不明所以的被挂了。
没有比这更痛苦的了,本来就是“投几十才中一”的面试机会,还没能把握住。
今天给大家整理了“野路子”转岗 AI 产品经理最常见的三个隐藏大坑,帮大家快速定位问题、成功上岸。
或者提前闭坑,别让得来不易的面试机会付诸东流。

这里的“野路子”包含以下两种情况:
#1没有产品经验,直接转岗 AI 产品经理。放心不止你自己这样,毕竟现在 AI 行业产品经理是门槛最低的,除此以外就只有算法工程师了。想入行只有 AI 产品可选。
#2 以“学会”为目标掌握的 AI 大模型知识,而不是项目和落地主导。这是大部分人的情况,不考虑使用场景,按照各种目录照本宣科硬学,学完了不知道啥用。
一、会使用,但不会应用
别小看“使用”和“应用”这俩字之差,这对于产品经理来说却是致命的。
很多人以为自己熟练使用各种 AI 工具、会写提示词,就是“会用 AI”了。
模拟一下面试:
“说说你的 AI 大模型的了解”。
如果你非常自信地说:
- “我每天都在用大模型提升效率。”
- “我给业务同事搭过很多提示词,帮他们写文案、做方案。”
甚至给展示:
- 你整理的提示词文档
- 你做的一些自动化流程小工具
但是面试官假如看完后问:“这些都很好,你能讲讲——
- 如果把这套用法做成一个可对外售卖的产品,你会怎么设计?”
- “你会如何控制 AI 行为,让输出更稳定、可预期?”
- “这套东西,在企业环境里如何对接现有系统?”
你该如何应对?
你所有的“会用”,停留在“个人效率工具”层面,距离“AI 产品经理”真正关注的东西,还有一大截。

你可能还有疑问:
“我每天都在重度用 GPT/Claude/Gemini 了,这难道不比很多‘没怎么用过的人’更有优势吗?”
“我也帮团队很多人写过提示词教程啊,为什么面试官一点都不感兴趣?”
“会用”是基本功,不是差异化竞争力。
产品经理需要的是把“会用”抽象成稳定的交互模式,把“我知道这个 prompt 有用”变成“我能设计一整套可运营的 AI 交互逻辑”。
绕坑方式非常简单,把你的能力和经验变成 Workflow 智能体,哪怕它只停留在修修补补凑合能用的状态,这也是一个产品 。
二、知识不体系,不能自验真伪
知识这东西,是用来“用”的,不是用来“掌握”的。
你要是当个业余爱好来学,就要那种“充实感”是没问题。
但如果是为了转岗找工作而学习,最忌讳的就是“闭门学造车”。
好多伙伴东一榔头、西一棒槌的学了一大堆大模型的知识,一会看训练算法(其实没必要学算法)、一会学提示词框架(其实也没必要),一会又跟着视频搭 Dify 和 Coze。
收藏了一堆提示词模版、一堆 DSL 工作流,但并不能串联到具体的应用里。
更关键的是,不能自验真伪。
有个同学之前跟我说自己一面挂的很摸不着头脑,他觉得自己回答的都很好。
我问他面试问啥问题了,他说有一个问题是“大模型为啥有幻觉,如何避免?”
他的回答是:
因为大模型不知道真正的事实是很么,以及训练预料不包含所有信息,所以就会产生幻觉。
避免的方式有两个,一个是在提示词里要求它不要输出不存在的信息,再一个是通过 RAG 来避免。
你可以先停下来思考一下:他的回答对么?
如果你也不知道为什么这样回答不对,那么说明你此刻所掌握的大模型知识是不体系、不能实战的。

不知道也没关系,毕竟某些大厂开源的 Agent 里,也写满了制造幻觉的提示词……
答案其实在大模型的训练阶段,具体的解法仅通过提示词约束它不说谎,甚至引入 RAG 都不能有效解决。
三、没有实践项目,只吃老本
你可能会问:没有实战经验没人要,没人要就没有实战经验,这不鸡生蛋蛋生鸡了……
但实际上,开发、实践一个 AI 项目的成本,几乎为零。
Github 上每天都有大量的 AI 开源项目噌噌涨到几K、几十K的 Stars。
上个月爆火的微舆项目,是一个大四学生纯 Vibe coding 出来的,不到一个月斩获 3 万多 Star。关键是为他带来了薪资非常满意的工作机会。

企业不是要你在某家公司做过什么 AI 项目,他们只是希望你能真正把一个“带 AI 的想法”变成“能用的 AI 产品”。
不管 Coze/Dify 类工作流产品还是 Vibe Coding,只要你想,都能在 1 小时内做一个 MVP 出来。
以下是我们经过大量企业交流、培训和学员面试辅导总结出来的几类必做 AI 项目。
完成了这些,90%以上的招聘岗位你都能轻松应对。
1.基于 RAG 的客服类项目
不管外面多少人说 RAG 没用,企业就是需要它。因为除了这个没有更快捷的方法了。

2.内部效率赋能类项目
1000 人以上的传统企业,是今天 AI 招聘市场上的主力军!
尤其是那些过去五年努力实现「数字化转型」的企业,数字化转型的成果 + AI 大模型,可以立刻看到成果!
把产品经理们投入到每个业务线,用 AI 提效、提质,是每一个 IT 部门今年和明年最核心的 KPI。

3.营销赋能类
营销是 AI 的强项,且岗位需求广、见效快,跨境电商、SaaS、内容团队都在用。
如果你在深圳工作,会发现招聘平台上一半都是跨境电商公司,其中 80%以上的 AI 产品经理招聘需求都是做营销赋能。

四、如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】


第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

880

被折叠的 条评论
为什么被折叠?



