微分方程与欧拉法

[TOC] #微分方程概述 微分方程在各个领域应用颇多。 形如 y=f(x,y) 的微分方程表示了系统的变化信息,如果在加上初始条件 (x0,y0) ,那么就可以求出系统整体随时间变化的信息。 可以说,**正是微分方程将物理世界模型化**。 #方向场与积分曲线 方向场(`direction field`)与积分曲线(`integral curve`)的关系,可以用下面的式子简要表示:
{y=f(x,y)y(x)DirectionFieldIntegralCurve
其中,当 f(x,y),f(x,y) 在邻域内连续时,积分曲线不会相交也不会相切,解存在且唯一(exist and unique)。 下面,举函数 y=x/y 的方向场与积分曲线:
%下面的函数dirfield需要用到参考资料中的函数

%定义函数y'
f = @(x,y) -x/y

%方向场的一些简单可视化
ezplot(f,[-2,2,-2,2])
ezsurf(f,[-2,2,-2,2])
ezcontour(f,[-2,2,-2,2]); colorbar

%画出方向场与积分曲线
dirfield(f,-2:0.2:2,-2:0.2:2)
hold on 
for y0=-0.2:0.5:2 
  [ts,ys] = ode45(f,[-2,2],y0); plot(ts,ys) 
end 
title('dy/dx=-x/y的方向场与积分曲线')
hold off
![这里写图片描述](http://7xlwwh.com1.z0.glb.clouddn.com/sXshot-0367.png) #微分方程的解析解法 微分方程的解析解法通常是将 x,y 分别移到等式的一边。 下面以 y=2y+1 为例,移项后 dy2y+1=dx ,所以有 12ln(|2y+1|)+c1=x+c2 ,进而有 |2y+1|=Ce2x ,最后解得:
y=Ce2x12
其实, ex 就是根据微分方程 y=y (0,1) 的初始条件下确定的。 使用matlab的解析解法为:
dsolve('Dy=2*y+1','x')
%输出为: (C2*exp(2*x))/2 - 1/2

%求解e^x
dsolve('Dy=y','y(0)=1','x')
%输出为: exp(x)
#微分方程的数值解法 ##欧拉法 欧拉法的核心是,设定步长为 h ,然后已知y(x0,y0),根据下面方法迭代:
xn+1yn+1Slope=xn+h=yn+hSlope=yn
ODE数值解法的matlab程序为:
[xs,ys] = ode45(f,[-2,2],y0)
##欧拉法的缺点
图片名称图片名称
由上图可见,欧拉法存在一定的误差,并且误差会累计。当步长越小误差也就越小拟合效果越好。 这种情况下,误差和步长的关系是:
ech
如果函数时而`convex`时而`concave`,这时候误差的变化便难以预测。
#---------------------------------------------------------
##凸函数
import numpy as np 
import scipy as sp
import matplotlib.pyplot as plt

#定义产生下一个点的函数
def nextPoint(x,y,h):
    xn = x + h
    slope = 2*x
    yn = y + h*slope
    return (xn,yn)
#定义产生点的生成器
def pointGenerator(x,y,h):
    while True:
        yield nextPoint(x,y,h)
        (x,y) = nextPoint(x,y,h)
#根据输入的起始终止点以及步长,输出可以用于画图的参数
def getXY(x,y,h):
    x1,y1=[],[]
    for i in pointGenerator(x,y,h):
        xi = i[0]
        yi = i[1]
        if xi>2.5:
            break
        else:
            x1.append(xi)
            y1.append(yi)
    x1.insert(0,-2)
    y1.insert(0,4)
    return (x1,y1)

#---------------------------------------------------------
#凹函数
#大部分和上面相同,只是将`nextPoint`函数重新定义
def nextPoint(x,y,h):
    xn = x + h
    slope = -2*x
    yn = y + h*slope
    return (xn,yn)

def pointGenerator(x,y,h):
    while True:
        yield nextPoint(x,y,h)
        (x,y) = nextPoint(x,y,h)

def getXY(x,y,h):
    x1,y1=[],[]
    for i in pointGenerator(x,y,h):
        xi = i[0]
        yi = i[1]
        if xi>2.5:
            break
        else:
            x1.append(xi)
            y1.append(yi)
    x1.insert(0,-2)
    y1.insert(0,-4)
    return (x1,y1)

x = np.arange(-2,2.1,0.1)
y = -x**2
x1,y1 = getXY(-2,-4,0.1)
x2,y2 = getXY(-2,-4,0.4)
x3,y3 = getXY(-2,-4,0.6)

plt.plot(x,y,'b--', linewidth=1,label='raw line')
plt.plot(x1,y1,'r',label='h=0.1')
plt.plot(x2,y2,'g',label='h=0.4')
plt.plot(x3,y3,'c',label='h=0.6')
plt.autoscale()
plt.xlim(-2.5,2.5)
plt.legend(loc='best')
plt.title('concave function with different h')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
##改进欧拉法之步长 步长的改进参考上文,步长越小误差越小。 ##改进欧拉法之斜率 核心是:计算斜率不只考虑当前的点,也考虑之后的点的斜率。 该方法一般被称作`runge-kutta`法,上文只用到一个斜率的被称为`RK1`,下面将要阐述的是`RK2`,同时在绝大多数数值计算工具中,`RK4`的使用最为广泛。
xn+1yn+1Slope=xn+h=yn+hSlope=(yn+yn+1)/2
图片名称

由上图可看,RK2的效果已经比RK1好太多的。

import numpy as np 
import scipy as sp
import matplotlib.pyplot as plt

#RK1
def nextPoint(x,y,h):
    xn = x + h
    slope = 2*x
    yn = y + h*slope
    return (xn,yn)


def pointGenerator(x,y,h):
    while True:
        yield nextPoint(x,y,h)
        (x,y) = nextPoint(x,y,h)


def getXY(x,y,h):
    x1,y1=[],[]
    for i in pointGenerator(x,y,h):
        xi = i[0]
        yi = i[1]
        if xi>2.5:
            break
        else:
            x1.append(xi)
            y1.append(yi)
    x1.insert(0,-2)
    y1.insert(0,4)
    return (x1,y1)


#RK2
def nextPoint2(x,y,h):
    xn = x + h
    slope = (2*x + 2*xn)/2
    yn = y + h*slope   
    return (xn,yn)


def pointGenerator2(x,y,h):
    while True:
        yield nextPoint2(x,y,h)
        (x,y) = nextPoint2(x,y,h)


def getXY2(x,y,h):
    x1,y1=[],[]
    for i in pointGenerator2(x,y,h):
        xi = i[0]
        yi = i[1]
        if xi>2.5:
            break
        else:
            x1.append(xi)
            y1.append(yi)
    x1.insert(0,-2)
    y1.insert(0,4)
    return (x1,y1)

#DATA
x = np.arange(-2,2.1,0.1)
y = x**2
x1,y1 = getXY(-2,4,1)
x2,y2 = getXY2(-2,4,1)
x3,y3 = getXY(-2,4,0.5)
x4,y4 = getXY2(-2,4,0.5)

#PLOT
plt.plot(x,y,'k', linewidth=1,label='raw line')
plt.plot(x4,y4,'r--',label='h=0.5 RK2')
plt.plot(x2,y2,'b--',label='h=1 RK2')
plt.plot(x3,y3,'c--',label='h=0.5 RK1')
plt.plot(x1,y1,'g--',label='h=1 RK1')

plt.autoscale()
plt.xlim(-2.5,2.5)
plt.legend(loc='best')
plt.title('convex function with different h and RKn')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()

参考资料

  1. MIT 18.03
  2. Using MATLAB for first order ODE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值