QAQ 本章的知识点相对于前两章比较少,而且也是正式进入惯导解算了
姿态微分方程
1、欧拉角微分方程
若导航坐标系为东北天坐标系,IMU的载体坐标系为右前上,欧拉角的旋转顺序为:Z->X->Y (偏航(yaw)、俯仰(pitch),滚转(roll))。
表示
C
ψ
C_\psi
Cψ绕Z轴的旋转矩阵,
C
θ
C_\theta
Cθ表示绕X轴的旋转矩阵,
C
ϕ
C_\phi
Cϕ表示绕Y轴的旋转矩阵。
C
n
b
C_n^b
Cnb为导航系到载体坐标系的转换矩阵,
X
b
X_b
Xb表示载体坐标系下的坐标,
X
n
X_n
Xn表示导航坐标系下的坐标,则有以下公式:
X
n
=
C
n
b
∗
X
b
X_n = C_n^b*X_b
Xn=Cnb∗Xb
第一步:
假设已经完成绕三个轴的旋转,则最后绕Y轴的角速度在载体坐标系和导航坐标系都是一样的,所以有如下公式:
w
b
(
r
o
l
l
)
=
[
d
(
p
i
t
c
h
)
/
d
t
,
0
,
0
]
T
w_b(roll)=[d_{(pitch)}/dt,0,0]^T
wb(roll)=[d(pitch)/dt,0,0]T
第二步:
假设已经完成了前两组旋转,最后一组旋转没有完成,如果接着完成最后一步旋转,则和第一步一样,绕X轴的角速度在两个坐标系下是一样的,则有如下公式
w
b
(
p
i
t
c
h
)
=
C
ϕ
∗
[
0
,
d
(
r
o
l
l
)
/
d
t
,
0
]
T
w_b(pitch)=C_\phi*[0,d_{(roll)}/dt,0]^T
wb(pitch)=Cϕ∗[0,d(roll)/dt,0]T
第三步:
分析和第二步类似。假设已经完成了第一组旋转,最后两组旋转没有完成,如果接着完成最后两组旋转,则绕Z轴的角速度在两个坐标系下是一样的,则有如下公式:
w
b
(
p
i
t
c
h
)
=
C
ϕ
∗
C
θ
∗
[
0
,
0
,
d
(
y
a
w
)
/
d
t
]
T
w_b(pitch)=C_\phi*C_\theta*[0,0,d_{(yaw)}/dt]^T
wb(pitch)=Cϕ∗Cθ∗[0,0,d(yaw)/dt]T
最后有:
[
w
n
b
x
b
,
w
n
b
y
b
,
w
n
b
z
b
]
T
=
[
d
(
p
i
t
c
h
)
/
d
t
,
0
,
0
]
T
+
C
ϕ
∗
[
0
,
d
(
r
o
l
l
)
/
d
t
,
0
]
T
+
C
ϕ
∗
C
θ
∗
[
0
,
0
,
d
(
y
a
w
)
/
d
t
]
T
[w_{nbx}^b,w_{nby}^b,w_{nbz}^b]^T=[d_{(pitch)}/dt,0,0]^T+C_\phi*[0,d_{(roll)}/dt,0]^T+C_\phi*C_\theta*[0,0,d_{(yaw)}/dt]^T
[wnbxb,wnbyb,wnbzb]T=[d(pitch)/dt,0,0]T+Cϕ∗[0,d(roll)/dt,0]T+Cϕ∗Cθ∗[0,0,d(yaw)/dt]T
整理后可得欧拉角微分方程。
当导航坐标系是北东地,载体坐标系是前右下时,欧拉角微分方程为:
注意 当俯仰角=90度时,是无解的,所以欧拉角法不能用在全姿态飞行器中。
2、方向余弦阵微分方程
[
Ω
n
b
b
]
[\Omega_{nb}^b]
[Ωnbb]是反对陈矩阵,有:
[
Ω
n
b
b
]
T
[\Omega_{nb}^b]^T
[Ωnbb]T=
−
[
Ω
n
b
b
]
-[\Omega_{nb}^b]
−[Ωnbb]
3、四元数微分方程
假设n系到b系的四元数为q,则:
这里的具体推导可参考这篇文章
姿态微分方程的求解有点复杂,公式太多啦,,,,这里就不求解了,只把微分方程的形式列出来了。
粗对准
对准按照不同的参照,可分为不同类别,如:动基座对准&静基座对准、自对准&传递对准、粗对准&精对准等等。
在运动基座上进行对准,需要外界提供参考信息,比如速度、加速度、姿态、位置等等,而精对准有多数要涉及卡尔曼滤波,因此这里只介绍下静基座状态下的粗对准,精对准留到后面章节再更新。
下面两种方法粗对准必须满足陀螺能够敏感地球自转!!!!!!!!
1、北东地坐标系下的解析粗对准
2、北东地坐标系下的罗经粗对准
首先是水平调平:
接下来是求解航向:
其实还有双矢量定姿法、多矢量定姿法 等等,但是因为粗对准后面一般接有精对准,最终姿态会收敛,所以这里就不介绍了(实际上是因为我懒)。