《视觉SLAM十四讲》笔记(4-6)

文章介绍了李群和李代数在解决相机位姿估计问题中的应用,通过将有约束的优化问题转化为无约束问题,简化了计算。此外,讨论了相机模型的不同类型,包括针孔相机、畸变校正、双目相机以及RGB-D相机的工作原理,并提到了非线性优化在处理这些问题中的重要性。
摘要由CSDN通过智能技术生成

4 李群与李代数

为了解决什么样的相机位姿最符合当前观测数据的问题,可以构建出一个优化问题来求解最优的R和t。以达到误差最小。但是旋转矩阵自身是带有约束的(正交且行列式为1),这会引入额外的约束,导致优化变得困难。通过李群——李代数这种关系,希望把位姿估计的问题变为无约束的优化问题。

4.1 李群与李代数基础

4.1.1 群

群(Group)是一种集合加上一种运算的代数结构。把集合记作A,运算记作 ⋅ \cdot ,那么群可以记作G = ( A , ⋅ )。群要求这个运算满足如下条件:

  • 封闭性
  • 结合律
  • 幺元

李群是指具有连续(光滑)性质的群。SO(3)和SE(3)都是李群。

4.1.2 李代数的引出

4.1.3 李代数的定义

每个李群都有与之对应的李代数,李代数描述了李群的局部性质。
李代数由一个集合V、一个数域F和一个二元运算[ , ](又称李括号)组成。如果它们满足以下几条性质,则称( V , F , [ , ] )为一个李代数,记作g。

  • 封闭性
  • 双线性
  • 自反性(自己与自己的运算为零)
  • 雅可比等价

4.2 指数与对数映射

在这里插入图片描述

4.3 李代数求导与扰动模型

引入李代数的一大动机就是方便求导优化。

5 相机与图像

5.1 相机模型

5.1.1 针孔相机模型

在这里插入图片描述
对内参、外参是怎么来的,做了推导。

5.1.2 畸变

畸变包含两种:径向畸变和切向畸变。
径向畸变:由透镜形状引起,主要包括桶形畸变和枕形畸变。可以看成坐标点沿着长度方向发生了变化,也就是其距离原点的长度发生了变化。
切向畸变:由透镜和成像平面不严格平行引起。可以看成坐标点沿着切线方向发生了变,也就是水平夹角发生了变化。

5.1.3 双目相机

基线:两个相机的光圈中心都位于x轴上,它们的距离称为双目相机的基线。
视差:左右图的横坐标之差。视差越大,距离越近。

5.1.4 RGB-D相机

按原理可以分为红外结构光型和飞行时间法(ToF)型。

6 非线性优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YuhsiHu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值