VIO标定IMU随机误差:Allan方差法

本文介绍了IMU标定中针对随机误差的处理,特别是Allan方差法。通过Allan方差分析,可以标定量化噪声、角度随机游走、零偏不稳定性等五种随机误差。文章详细讲解了如何读取误差系数,并提供了imu_utils和kalibr_allan两个工具的使用方法,包括环境配置、代码编译、数据处理和结果解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

在IMU采集数据时,会产生两种误差:确定性误差和随机性误差,为获得精确的数据,需要对上述两种误差进行标定。

  1. 确定性误差

确定性误差主要包括bias(偏置)、scale(尺度)、misalignment(坐标轴互相不垂直)等多种。常使用六面静置法标定加速度计陀螺仪的确定性误差。

  1. 随机误差

随机误差主要包括:高斯白噪声、bias随机游走。加速度计陀螺仪随机误差的标定通常使用Allan方差法,Allan方差法是20世纪60年代由美国国家标准局的David Allan提出的基于时域的分析方法。

  1. Allan方差图读取误差系数

Allan方差法可用于5种随机误差的标定:
量化噪声(Quantization Noise):误差系数为 Q Q Q,Allan方差双对数曲线上斜率为 − 1 -1 1的直线延长线与 t = 1 0 0 t=10^0 t=100的交点的纵坐标读数为 3 Q \sqrt{3}Q 3 Q
角度随机游走(Angle Random Walk):其误差系数 N N N,Allan方差双对数曲线上斜率为 − 1 / 2 -1/2 1/2的线的延长线与 t = 1 0 0 t=10^0 t=100交点的纵坐标读数即为 N N N
零偏不稳定性(Bias Instability):其误差系数

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值