部署Qwen2.5-7B-VL时的两个报错

一、

ImportError: cannot import name 'Qwen2_5_VLForConditionalGeneration' from 'transformers' (/usr/local/lib/python3.10/site-packages/transformers/init .py)
这时候检查一下transformer的版本:

终端里运行bash命令:

pip show transformers

然后运行下面的命令升级transformer的版本到最新版:

pip install --upgrade transformers

然后可以再次运行第一个命令查看有没有升级,然后新建一个python文件,把本来要运行的代码复制进去,再运行就好了。

二、Huggingface连不上去
报错如下:OSError: We couldn't connect to 'https://huggingface.co ' to load this file, couldn't find it in the cached files and it looks like Qwen/Qwen2.5-VL-7B-Instruct is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode '.

在代码的最开头添加

import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"

之后要重启终端/服务器/编译器,再打开就好了

### 部署 Qwen2.5-VL-7B 模型 #### 环境准备 为了成功部署 Qwen2.5-VL-7B-Instruct 模型,需先准备好相应的运行环境。这包括但不限于 Python 版本确认以及必要的依赖库安装。 对于 Python 的版本需求,建议使用 Python 3.8 或以上版本以确保兼容性[^1]。 ```bash python --version ``` #### 安装 vLLM 和其他依赖项 vLLM 是用于加载和推理大型语言模型的重要工具之一,在此过程中扮演着不可或缺的角色。通过 pip 工具可以方便快捷地完成其安装: ```bash pip install vllm ``` 除了 vLLM 外,还需根据具体应用场景安装额外的支持库,比如 NumPy、Torch 等基础科学计算框架及其扩展模块。 #### 下载预训练模型文件 获取官方发布的 Qwen2.5-VL-7B-Instruct 模型权重文件是至关重要的一步。通常情况下可以从 Hugging Face Model Hub 这样的公共平台下载所需资源。注意要遵循官方网站给出的确切路径来定位目标模型并保存至本地指定位置。 ```bash from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "Qwen/Qwen-2.5-VL-7B" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) ``` #### 启动服务端口监听 一切就绪之后就可以调用 vLLM 提供的服务接口开启 HTTP API Server 来提供在线预测功能了。这里可以通过命令行参数配置诸如主机地址、端口号等基本信息以便于后续接入测试或生产环境中去。 ```bash import uvicorn from fastapi import FastAPI from pydantic import BaseModel from typing import List app = FastAPI() class Item(BaseModel): prompt: str @app.post("/predict/") async def predict(item: Item): result = model.generate(tokenizer.encode(item.prompt)) response = tokenizer.decode(result[0]) return {"response": response} if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000) ``` 上述代码片段展示了如何基于 FastAPI 构建简单的 RESTful Web Service 并将其绑定到特定 IP 地址及端口上等待客户端请求的到来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值