An Improved YOLOv8 Algorithm for Rail SurfaceDefect Detection:改进的YOLOv8钢轨表面缺陷检测算法

本文针对铁路轨道表面缺陷检测问题,提出基于YOLOv8模型的改进算法。用SPD - Conv替换卷积增强对中小目标关注,集成EMA注意力机制提高特征表达能力,用Focal - SIoU损失函数调整样本权重。实验表明,改进算法在精确率、召回率和平均准确率上显著提升,且不增加模型大小和参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:

针对铁路轨道表面缺陷检测中小目标和密集遮挡目标检测带来的问题,提出一种基于YOLOv8模型的铁路轨道缺陷检测算法。

1、使用SPD-Conv替换原始YOLOv8n中的卷积,来增强模型对中小目标的关注,同时保留原始网络的结构。

2、其次,我们将EMA注意力机制集成到neck中,使得模型能够利用不同层级的信息来提高特征表达能力。

3、最后,我们使用Focal-SIoU损失函数代替原始的CIoU函数,调整正负样本的权重,对难以分类的样本进行更加严厉的惩罚。

这一增强功能提高了模型准确识别具有挑战性的样本的能力,并确保网络对每个目标实例分配更多的注意力,从而提高模型的性能和有效性。实验结果表明,我们的增强算法在精确率、召回率和平均准确率方面都有了显著的提高。与原始的YOLOv8模型相比,我们改进的算法表现出卓越的精确率,召回率和平均准确率,分别达到93.9%,93.7%和94.1%。这些改进分别提高了3.6%,5.0%和5.7%。值得注意的是,这些改进是维持模型的维度和参数数量下完成的。在铁路轨道表面缺陷识别过程中,我们改进的算法在性能方面超过了其他广泛使用的算法。

关键词:钢轨缺陷检测,深度学习,YOLOv8,卷积模块,注意力机制,损失函数。

1、引言:

        由于铁路行业呈指数级增长,运营里程、速度和密度不断扩大。因此,和铁路相关的风险也在不断地上升[1]。这对铁路巡检的要求提出了更大的挑战。高速列车与钢轨表面之间的摩擦和滚动接触会导致磨损、变形,并且随着时间的推移,会产生波磨、裂纹、疤痕、断轨等缺陷[2]。波磨是指在铁路轨道表面观察到的周期性、正弦磨损或变形。裂纹的特征是钢轨表面出现线性或小裂缝。疤痕表示表面划痕或磨损痕迹。 钢轨断裂是指沿铁路线的一个或多个点发生的断裂。如果这些问题不及时发现和修复,可能会危及轨道交通安全,可能导致列车脱轨和严重事故。因此,及时发现并及时修复钢轨表面缺陷至关重要。显着降低事故风险,保障运输安全,延长钢轨使用寿命,降低维护成本。

        传统的钢轨缺陷检测方法包括人工检测[3]、磁粉检测[4]、红外热成像检测[5]。人工检测是一种简单并且 直接的方式,但它会受到检查员主观判断和疲劳的影响,导致结果不一致和不准确。而且,其效率低并且花费较高。磁粉检测可以使钢轨表面缺陷可视化,这有利于初步评估,但是其操作复杂,技术要求高,环境要求严格。与人工检查类似,也容易出现主观评价。 红外热成像检查是一种非接触式方法,可最大程度地减少对铁轨的干扰。然而,它主要关注与热相关的缺陷,检测其他类型缺陷(例如裂纹)的能力有限。此外,它很难提供有关缺陷大小和深度的精确信息。

       近年来,人工智能技术领域取得了令人瞩目的进步,其中机器视觉领域取得了显著突破。这一进展催生出了各种具有高精度和快速响应时间的神经网络模型[6]。这些模型的引入为轨道缺陷检测提供了一种新的解决方案,可以显着减少人力和物力资源投入,同时提高检测的准确性和效率[7]。被称为You Only Look Once (YOLO) [8] 的模型系列作为一种广泛使用的目标检测框架,已广泛应用于检测铁路轨道缺陷,产生了值得称赞的准确性和检测结果。另外,另一种流行的目标检测模型基于区域的卷积神经网络(Faster R-CNN)[9]利用候选区域提取和分类回归网络来精确定位和识别轨道上的缺陷。此外,多项研究将深度学习模型与图像分割技术相结合,实现了铁路轨道缺陷的精确分割和检测。值得注意的例子包括采用 U-Net [10] 和 Mask R-CNN [11] 等模型来定位和分割赛道上的缺陷区域。 总体而言,深度学习算法 [12] 在检测铁轨缺陷领域展现了巨大的前景并取得了显着的成果。

     在铁路安全领域,识别钢轨表面异常情况发挥着关键作用。近几十年来,机器视觉技术取得了显著的进步,见证了其在各国铁路轨道缺陷检测中的应用取得了重大的进展。在国际上,Sresakoolchai 和 Kaewunruen [13] 提出了一种新颖的方法,旨在通过利用轨道几何相关性(TGC)来获取轨道的精确几何表示来检测轨道缺陷。所提出的方法利用深度神经网络(DNN)[14]模型来有效地识别和分类缺陷。实验结果表明,该方法在检测钢轨截面异常和道钉磨损方面达到了 92.17% 的显着准确率。然而,随着缺陷类别数量的增加,模型的检测性能会下降。Mohan[15]等人,引入了一种增强的深度学习模型,叫做YOLOv2,它利用双折叠跳跃架构来识别和检测实时视频序列中的列车转向架组件。该模型的准确率达到69.0%,该模型检测性能的不佳可以归因于使用旧版本的YOLO,这阻碍了其检测能力。Casas[16]等人使用YOLOv8[17]模型来自动检测和计算林业中的堆积木材,使用CSPDarknet53骨干网络,mAP50达到83.9%。然而,它始终表现出低估静态图像中堆积的木材数量的趋势,导致误差范围从 -32.817% 到 -48.805%。在国内。cao[18]开发了一种基于深度学习的冷重轨表面缺陷视觉检测系统。该系统改进了Faster-RCNN目标检测模型的参数和结构,通过调整算法的逻辑,有效提升缺陷检测效率,保证重轨的生产质量。该系统对卷痕和卷痕测试数据的检测准确率和召回率均超过 90%。然而,由于系统所使用的数据集的有限性和不平衡性,该模型遇到了明显的过拟合现象,从而导致在实际测试场景中潜在的遗漏和识别错误。Bai[19]等人提出了一种基于改进的YOLOv4方法来检测铁路表面的缺陷。所提出的方法采用MobileNetv3作为底层框架,用于在YOLOv4框架中提取图像特征。此外,YOLOv4 中的 PANet 层采用了深度可分离卷积,与原始 YOLOv4 模型相比,准确率显着提高了 1.64%。Wang 等人[20]利用YOLOV5 框架引入了一种检测轨道扣件缺陷的创新方法。为了增强模型的能力,他们采用了通过几何中值过滤器剪枝(FPGM)算法进行模型剪枝,从而可以控制地增加模型的宽度和深度。结果,平均精度(mAP)从 91.23% 大幅提高到 93.42%。Hu 等人提出了一种增强型 YOLOX-Nano 钢轨扣件缺陷检测方法。 [21]通过在PAFPN输出产生的特征图之后立即应用自适应空间特征融合(ASFF),改进的YOLOX-Nano模型的mAP值增加了18.75%。Hu 等人提出了一种增强型 YOLOX-Nano 钢轨扣件缺陷检测方法。 [21]通过在PAFPN输出产生的特征图之后立即应用自适应空间特征融合(ASFF),改进的YOLOX-Nano模型的mAP值增加了18.75%。wang人。 [22]提出了一种改进的道路缺陷检测算法,该算法融合了 BiFPN 概念,并在框架内重建了 YOLOv8s 的颈部结构,与原始模型 mAP@0.5 相比平均精度提高了 3.3%。这些进步不仅提高了铁路检测的准确性而且有助于中国铁路安全管理体系的现代化。

        铁轨的表面缺陷检测提出了一些需要解决的挑战[23],首先,各种复杂的背景干扰的存在,包括铁锈、污垢和涂层,造成了相当大的困难,因为它们与真正的缺陷相似&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值