今天跟大家分享一篇关于YOLOv9的文章
摘要:
YOLO系列最新版本YOLOv9的推出,使其在各种场景中得到广泛应用。 本文首次将YOLOv9算法模型应用到计算机辅助诊断(CAD)的骨折检测任务中,以帮助放射科医生和外科医生解读X射线图像。 具体来说,本文在 GRAZPEDWRI-DX 数据集上训练模型,并使用数据增强技术扩展训练集以提高模型性能。 实验结果表明,与当前state-of-the-art(SOTA)模型的mAP 50-95相比,YOLOv9模型将值从42.16%提高到43.73%,提升了3.7%。 实现代码可在 https://github.com/RuiyangJu/YOLOv9-Fracture-Detection 上公开获取。
引言:
计算机辅助诊断 (CAD) 帮助放射科医生和外科医生等专家解读医学图像,包括磁共振成像 (MRI)、计算机断层扫描 (CT) 和 X 射线图像。 深度学习技术在医学图像中的应用[1-4]已经取得了越来越令人满意的结果,使其成为流行的研究热点,特别是在骨折检测方面[5-7]。 You Only Look Once (YOLO)系列[8-16]是实时目标检测任务的主要神经网络,广泛应用于断裂检测[17-19]。 儿童手腕骨折更为常见,GRAZPEDWRI-DX 数据集 [20] 提供了 20,327 张儿童手腕外伤的 X 射线图像,可用于骨折检测任务。 研究[21]首先使用YOLOv8[16]模型在此数据集上进行断裂检测。 由于注意力机制 [22-25] 在增强神经网络模型的性能方面具有出色的效果,Chien 等人。 通过将不同的注意力机制融入到 YOLOv8 模型中,实现了最先进的(SOTA)性能。 随着YOLOv9[26]在MS COCO 2017[27]基准数据集上取得了显着的模型性能,本文首先在GRAZPEDW