腾讯于2025年4月推出的PagesMCP,是一款基于AI的网页一键部署工具,深度整合了EdgeOne Pages服务与MCP(多模态控制协议)技术,实现了“用自然语言生成网页并自动部署到线上”的全流程自动化。
本文将介绍PagesMCP以及如何在Cursor中使用PagesMCP实现网页一键部署。
一、核心功能
-
零代码部署
通过自然语言指令(如“帮我把网页部署到线上”),AI自动生成HTML内容并完成部署,无需手动配置服务器或登录云平台。 -
全球加速与免费流量
依托腾讯云全球节点(3200+),自动缓存静态资源至边缘节点,首月提供10GB免费流量,后续按0.01元/万次计费,成本仅为传统方案的60%。 -
多框架支持
兼容Next.js、React、Vue、Svelte等主流框架,支持静态站点生成(SSG)与边缘Serverless函数,满足动态渲染需求。
二、应用场景
- 快速原型验证:产品经理通过自然语言描述需求,几分钟内获得可访问原型。
- 个人作品集:无需技术背景,直接部署个人博客或作品展示页。
- 活动落地页:市场人员自主创建活动页面,无需等待开发资源。
- 教育演示:教师快速生成教学网页,提升课堂互动性。
三、技术优势
- 边缘计算集成:通过EdgeOne Pages Functions在边缘节点执行代码,降低延迟至毫秒级。
- 全流程透明:用户无需关注底层架构,AI自动处理代码部署、资源分配等步骤。
- 生态扩展性:未来支持多MCP协同(如联动数据库、小程序部署),进一步简化开发流程。
四、在Cursor中使用
1、 配置MCP Server
步骤 1 安装依赖
- EdgeOne Pages MCP 依赖 Node.js 环境和对应的 npm 包:
① 打开终端,执行以下命令验证 Node.js 是否安装:
node -v # 需返回 v14.x 或更高版本
npm -v # 需返回 6.x 或更高版本
② 全局安装 edgeone-pages-mcp
npm install -g edgeone-pages-mcp
若安装失败,可能是网络问题,尝试切换 npm 镜像源:
npm config set registry https://registry.npmmirror.com
③ 安装完成后,手动触发 MCP 服务调试
在终端中直接运行命令:
npx edgeone-pages-mcp
步骤 2 在Cursor添加MCP
确保 Cursor 为最新版本,并打开设置(Settings
)->MCP->Add new global MCP server
在配置文件mcp.json中添加 MCP Server 的 JSON 配置,代码示例如下:
{
"mcpServers": {
"edgeone-pages-mcp-server": {
"command": "npx",
"args": ["edgeone-pages-mcp"]
}
}
}
步骤 3:保存配置后,刷新 MCP 服务列表。若配置成功,edgeone-pages-mcp-server
前会显示绿灯标识。
2、 生成与编辑 HTML 内容
Cursor 的 AI 功能可辅助生成或优化 HTML 代码:
- 代码生成:使用快捷键
Ctrl+K
或Ctrl+L
输入需求,AI 会自动生成完整代码模块,包含响应式布局、动画效果等。 - 代码优化:选中代码片段后,输入指令(如“优化代码结构”),Cursor 会根据 AI 建议进行重构,例如简化 CSS 或增强交互逻辑。
Prompt: 生成一个A股数据看板HTML页面
网页暂且不做进一步优化
3、 一键部署到 EdgeOne Pages
部署过程高度自动化:
-
触发部署:在编辑器中输入自然语言指令,例如“帮我把网页部署到线上”,Cursor 会通过 MCP Server 将 HTML 内容发送至 EdgeOne Pages 平台。
-
生成访问链接:部署完成后,EdgeOne Pages 会返回一个可公开访问的 URL(如
https://mcp.edgeone.site/share/xxxxx
),支持秒级全球分发。 -
自定义域名:若需长期使用,可在腾讯云注册域名并完成 ICP 备案,通过 EdgeOne Pages 控制台绑定域名并配置 HTTPS 证书。
Prompt: 使用MCP将代码部署到 EdgeOne Pages 并生成公开访问链接
可以看到,Cursor调用我们刚配置的MCP服务已经成功将网页部署。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。